Log in

Multidimensional Quaternionic Gabor Transforms

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this paper, we extend the Gabor transform to the quaternion valued functions on \({\mathbb{R}^{d}}\) in two different ways, where \({d\in \mathbb{N}}\) is arbitrary. We prove that the quaternionic Gabor transforms satisfy the properties including Parseval relation, inversion formula, linearity and uncertainity principle. We also present an extension of a quaternionic Gabor transform to Boehmians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akila L., Roopkumar R.: A natural convolution of quaternion valued functions and its applications. Appl. Math. Comput. 242, 633–642 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Akila, L., Roopkumar, R.: Ridgelet transform on quaternion valued functions. (submitted)

  3. Bhuvaneswari R., Karunakaran V.: Boehmians of type S and their Fourier transforms. Ann. Univ. Mariae Curie–Skłodowska Sect. A 64, 27–43 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Fu Y.X.: Non-harmonic quaternion Fourier transform and uncertainty principle. Integral Transform. Spec. Funct. 25, 998–1008 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gröchenig, K.: Foundations of Time–Frequency Analysis. Birkhäuser, Basel (2001)

  6. He J., Yu B.: Continuous wavelet transforms on the space L 2(R, H;dx). Appl. Math. Lett. 17, 111–121 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hitzer E.: Quaternion Fourier transform on quaternion fields and generalizations. Adv. Appl. Clifford Algeb. 17, 497–517 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hitzer E.M.S.: Directional uncertainty principle for Quaternion Fourier transform. Adv. Appl. Clifford Algeb. 20, 271–284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hogan J.A., Morris A.J.: Quaternionic wavelets. Numer. Funct. Anal. Optim. 33, 1031–1062 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karunakaran V., Kalpakam N.V.: Hilbert transform for Boehmians. Integral Transform. Spec. Funct. 9, 19–36 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karunakaran V., Vembu R.: Hilbert transform on periodic Boehmians. Houston J. Math. 29, 439–454 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Karunakaran V., Prasanna Devi C.: The Laplace transform on a Boehmian space. Ann. Polon. Math. 97, 151–157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mawardi B., Hitzer E.: Clifford Fourier transformation and uncertainty principle for the Clifford geometric algebra Cl 3,0. Adv. Appl. Clifford Algebr. 16, 41–61 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mawardi B., Hitzer E., Hayashi A., Ashino R.: An uncertainty principle for quaternion Fourier transform. Comput. Math. Appl. 56, 2411–2417 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mawardi B., Ashino R., Vaillancourt R.: Two-dimensional quaternion wavelet transform. Appl. Math. Comput. 218, 10–21 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Mawardi B., Hitzer E., Ashino R., Vaillancourt R.: Windowed Fourier transform of two-dimensional quaternionic signals. Appl. Math. Comput. 216, 2366–2379 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Mawardi, B., Ashino, R., Vaillancourt, R.: Continuous quaternion Fourier and wavelet transforms. Int. J. Wavelets Multiresolut. Inf. Process. 12, 1460003 (2014)

  18. Mikusiński, J.: Operational Calculus. Pergamon Press, New York (1959)

  19. Mikusiński J., Mikusiński P.: Quotients de suites et leurs applications dans l’anlyse fonctionnelle. C. R. Acad. Sci. Paris 293, 463–464 (1981)

    MATH  Google Scholar 

  20. Mikusiński P.: Convergence of Boehmians, Japan. J. Math. 9, 159–179 (1983)

    MathSciNet  MATH  Google Scholar 

  21. Mikusiński P.: On flexibility of Boehmians. Integral transform. Spec. Funct. 4, 141–146 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mikusiński P., Zayed A.I.: The radon transform of Boehmians. Proc. Am. Math. Soc. 118, 561–570 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mikusiński P., Morse A., Nemzer D.: The two sided Laplace transform for Boehmians. Integral Transform. Spec. Funct. 2, 219–230 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mikusiński P.: Tempered Boehmians and ultra distributions. Proc. Am. Math. Soc. 123, 813–817 (1995)

    Article  MATH  Google Scholar 

  25. Nemzer D.: The Laplace transform on a class of Boehmians. Bull. Austral. Math. Soc. 46, 347–352 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nemzer D.: Extending the Stieltjes transform. Sarajevo J. Math. 10, 197–208 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nemzer D.: Extending the Stieltjes transform II. Fract. Calc. Appl. Anal. 17, 1060–1074 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Roopkumar R.: Wavelet analysis on a Boehmian space. Int. J. Math. Math. Sci. 2003, 917–926 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Roopkumar R.: Generalized radon transform. Rocky Mount. J. Math. 36, 1375–1390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Roopkumar R.: Mellin transform for Boehmians. Bull. Inst. Math. Acad. Sinica 4, 75–96 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Roopkumar R.: Ridgelet transform on square integrable Boehmians. Bull. Korean Math. Soc. 46, 835–844 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Roopkumar R.: An extension of distributional wavelet transform. Colloq. Math. 115, 195–206 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Roopkumar R., Negrin E.R.: Poisson transform on Boehmians. Appl. Math. Comput. 216, 2740–2748 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Roopkumar R.: Extension of ridgelet transform to tempered Boehmians. Novi Sad J. Math. 42, 19–32 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Roopkumar R.: On extension of Gabor transform to Boehmians. Mat. Vesnik 65, 431–444 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Roopkumar R.: Stockwell transform for Boehmians. Integral Transform. Spec. Funct. 24, 251–262 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Roopkumar, R., Negrin, E.R., Ganesan, C.: Fourier sine and cosine transforms on Boehmian spaces. Asian Eur. J. Math. 6, 1350005 (2013)

  38. Subash Moorthy R., Roopkumar R.: Curvelet transform for Boehmians. Arab J. Math. Sci. 20, 264–279 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tobar F.A., Mandic D.P.: Quaternion reproducing kernel Hilbert spaces: existence and uniqueness conditions. IEEE Trans. Inform. Theory 60, 5736–5749 (2014)

    Article  MathSciNet  Google Scholar 

  40. Zayed I.A., Mikusiński P.: On the extension of the Zak transform. Methods Appl. Anal. 2, 160–172 (1995)

    MathSciNet  MATH  Google Scholar 

  41. Zayed A.I.: Fractional fourier transforms of generalized functions. Integral Transform. Spec. Funct. 7, 299–312 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajakumar Roopkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akila, L., Roopkumar, R. Multidimensional Quaternionic Gabor Transforms. Adv. Appl. Clifford Algebras 26, 985–1011 (2016). https://doi.org/10.1007/s00006-015-0634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-015-0634-x

Mathematics Subject Classification

Keywords

Navigation