Log in

A Special Connection between γδ T Cells and Natural Antibodies?

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Natural antibodies (NAbs) play an important role in early host defense, autophagy and tissue remodeling, and in immune regulation. They arise spontaneously (without specific immunization), and are already present at birth. NAbs are produced by B1 B cells, MZ B cells and other B cell types. They include all major Ig subclasses but IgM antibodies are prevalent, especially early in development. NAbs may be poly-specific, recognize particular auto-antigens, or detect neo-determinants such as those exposed during apoptosis or generated by oxidation. NAbs do not require cognate T cell help but depend on soluble mediators produced by T cells. Our recent studies suggest that γδ T cells may have a special relationship with NAbs, and play a prominent role in their regulation, in part through the fine-tuning of IL-4 levels. The spontaneously activated state of these cells likely enables their cytokine production and other functions in the absence of external stimulation. Ontogenetically, the earlier arising γδ T cells are better positioned than αβ T cells to shape the develo** repertoire of NAbs. Intriguingly, ligand specificities of NAbs and γδ T cell receptors appear to be overlap**, perhaps allowing γδ cognate help for certain NAb specificities. Via NAbs, γδ T cells could exert a regulatory influence on numerous processes in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

NAb:

Natural antibody

TCR:

T cell receptor

IL-4:

Interleukin 4

IVIG:

Intravenous immunoglobulin

References

  • Air GM (2015) Influenza virus antigenicity and broadly neutralizing epitopes. Curr Opin Virol 11:113–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Airoldi I, Bertaina A, Prigione I et al (2015) γδ T cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-αβ+/CD19+ lymphocytes. Blood 125:2349–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aksentijevich I, Sachs DH, Sykes M (1991) Natural antibodies can inhibit bone marrow engraftment in the rat—mouse species combination. J Immunol 147:4140–4146

    CAS  PubMed  Google Scholar 

  • Avrameas S (1991) Natural autoantibodies: from “horror autotoxicus” to “gnoti seauton”. Immunol Today 12:154–159

    CAS  PubMed  Google Scholar 

  • Avrameas SC (2016) Autopolyreactivity confers a holistic role in the immune system. Scand J Immunol 83:227–234

    Article  CAS  PubMed  Google Scholar 

  • Avrameas S, Selmi C (2013) Natural autoantibodies in the physiology and pathophysiology of the immune system. J Autoimmun 41:46–49

    Article  CAS  PubMed  Google Scholar 

  • Aydintug MK, Zhang L, Wang C et al (2014) γδ T cells recognize the insulin B:9–23 peptide antigen when it is dimerized through thiol oxidation. Mol Immunol 60:116–128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker N, Ehrenstein MR (2002) Cutting edge: selection of B lymphocyte subsets is regulated by natural IgM. J Immunol 169:6686–6690

    Article  CAS  PubMed  Google Scholar 

  • Bank I, Marcu-Malina V (2013) Quantitative peripheral blood perturbations of γδ T cells in human disease and their clinical implications. Clin Rev Allergy Immunol 47:311–333

    Article  CAS  Google Scholar 

  • Basnet NB, Ide K, Tahara H et al (2010) Deficiency of N-glycolylneuraminic acid and Galα1-3Galβ1-4GlcNAc epitopes in xenogeneic cells attenuates cytotoxicity of human natural natibodies. Xenotransplantation 17:440–448

    Article  PubMed  Google Scholar 

  • Benatuil L, Kaye JA, Rich RF et al (2005) The influence of natural antibody specificity on antigen immunogenicity. Eur J Immunol 35:2638–2647

    Article  CAS  PubMed  Google Scholar 

  • Boffey J, Nicholl D, Wagner ER et al (2004) Innate murine B cells produce anti-disialosyl antibodies reactive with Campylobacter jejuni LPS and gangliosides that are polyreactive and encoded by a restricted set of unmutated V genes. J Neuroimmunol 152:98–111

    Article  CAS  PubMed  Google Scholar 

  • Bohn J, Roggenbuck D, Settmacher U et al (1994) Binding of natural human IgM auto-antibodies to human tumor cell lines and stimulated normal T lymphocytes. Immunol Lett 39:187–194

    Article  CAS  PubMed  Google Scholar 

  • Bonneville M, O’Brien RL, Born WK (2010) γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 10:467–478

    Article  CAS  PubMed  Google Scholar 

  • Born WK, Vollmer M, Reardon C et al (2003) Hybridomas expressing γδ T-cell receptors respond to cardiolipin and β2-glycoprotein 1 (apolipoprotein H). Scand J Immunol 58:374–381

    Article  CAS  PubMed  Google Scholar 

  • Bovin NV (2013) Natural antibodies to glycans. Biochemistry 78:786–797

    CAS  PubMed  Google Scholar 

  • Britschgi M, Olin CE, Johns HT et al (2009) Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer’s disease. Proc Natl Acad Sci USA 106:12145–12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buneva VN, Krasnorutskii MA, Nevinsky GA (2013) Natural antibodies to nucleic acids. Biochemistry 78:127–143

    CAS  PubMed  Google Scholar 

  • Cady CT, Lahn M, Vollmer M et al (2000) Response of murine γδ T cells to the synthetic polypeptide poly-Glu50Tyr50. J Immunol 165:1790–1798

    Article  CAS  PubMed  Google Scholar 

  • Carding SR, Egan PJ (2000) The importance of γδ T cells in the resolution of pathogen-induced inflammatory immune responses. Immunol Rev 173:98–108

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Park YB, Patel E et al (2009) IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J Immunol 182:6031–6043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien YH, Jores R, Crowley MP (1996) Recognition by γ/δ T cells. Ann Rev Immunol 14:511–532

    Article  CAS  Google Scholar 

  • Chikazawa M, Otaki N, Shibata T et al (2013) An apoptosis-associated mammary protein deficiency leads to an enhanced production of IgM antibodies against multiple damage-associated molecules. PLoS One 8:e68468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou MY, Fogelstrand L, Hartvigsen K et al (2009) Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J Clin Invest 119:1335–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton JE, Pearson J, Scott P et al (2003) The interaction of γδ T cells with activated macrophages is a property of the Vg1 subset. J Immunol 171:6488–6494

    Article  CAS  PubMed  Google Scholar 

  • Delia D, Cattoretti G, Fontanella E et al (1988) CD1c but neither CD1a nor CD1b molecules are expressed on normal, activated, and malignant human B cells: identification of a new B-cell subset. Blood 72:241–247

    CAS  PubMed  Google Scholar 

  • Dieude M, Striegl H, Tyznik AJ et al (2011) Cardiolipin binds to CD1d and stimulates CD1d-restricted γδ T cells in the normal murine repertoire. J Immunol 186:4771–4781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimayuga PC, Cesena FH, Chyu KY et al (2009) Natural antibodies and complement modulate intimal thickening after arterial injury. Am J Physiol Regul Integr Comp Physiol 297:R1593–R15600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan B, Niu H, Xu Z et al (2008) Intrafollicular location of marginal zone/CD1d(hi) B cells is associated with autoimmune pathology in a mouse model of lupus. Lab Invest 88:1008–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand CA, Hartvigsen K, Fogelstrand L et al (2009) Phosphoinositide 3-kinase p110 delta regulates natural antibody production, marginal zone and B-1 B cell function, and autoantibody responses. J Immunol 183:5673–5684

    Article  CAS  PubMed  Google Scholar 

  • Durrbach A, Baple E, Preece AF et al (2007) Virus recognition by specific natural antibodies and complement results in MHC I cross-presentation. Eur J Immunol 37:1254–1265

    Article  CAS  PubMed  Google Scholar 

  • Ehrenstein MR, Notley CA (2010) The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 10:778–786

    Article  CAS  PubMed  Google Scholar 

  • Elluru SR, Kaveri SV, Bayry J (2014) Regulation of human dendritic cell function by natural anti-CD40 antibodies. Methods Mol Biol 1155:47–54

    Article  CAS  PubMed  Google Scholar 

  • Elvington A, Atkinson C, Kulik L et al (2012) Pathogenic natural antibodies propagate cerebral injury following ischemic stroke in mice. J Immunol 188:1460–1468

    Article  CAS  PubMed  Google Scholar 

  • Felices M, Yin CC, Kosaka Y et al (2009) Tec kinase Itk in γδ T cells is pivotal for controlling IgE production in vivo. Proc Natl Acad Sci USA 106:8308–8313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flajnik MF, Rumfelt LL (2000) Early and natural antibodies in non-mammalian vertebrates. Curr Top Microbiol Immunol 252:233–240

    CAS  PubMed  Google Scholar 

  • Frostegard J (2010) Low level natural antibodies against phosphorylcholine: a novel risk marker and potential mechanism in artherosclerosis and cardiovascular disease. Clin Immunol 134:47–54

    Article  PubMed  CAS  Google Scholar 

  • Fukuda K, Takao Y, Miyazaki Y et al (2004) New type of natural antibodies reactive to cytotoxic T lymphocyte-directed cancer vaccine peptides. Immunobiology 209:245–253

    Article  CAS  PubMed  Google Scholar 

  • Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis (*). Ann Rev Immunol 27:165–197

    Article  CAS  Google Scholar 

  • Gerber DJ, Azuara V, Levraud JP et al (1999) IL-4-producing γδ T cells that express a very restricted TCR repertoire are preferentially localized in liver and spleen. J Immunol 163:3076–3082

    CAS  PubMed  Google Scholar 

  • Gonzalez R, Charlemagne J, Mahana W et al (1988) Specificity of natural serum antibodies present in phylogenetically distinct fish species. Immunology 63:31–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gounopoulos P, Merki E, Hansen LF et al (2007) Antibodies to oxidized low density lipoprotein: epidemiological studies and potential clinical applications in cardiovascular disease. Minerva Cardioangiol 55:821–837

    CAS  PubMed  Google Scholar 

  • Gronwall C, Silvermann GJ (2014) Natural IgM: beneficial autoantibodies for the control of inflammatory and autoimmune disease. J Clin Immunol 34(Suppl 1):S12–S21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gronwall C, Vas J, Silverman GJ (2012) Protective roles of natural IgM antibodies. Front Immunol 3:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamanova M, Zdrazilova Dubska L, Valik D et al (2014) [Natural antibodies against α(1,3) galactosyl epitope in the serum of cancer patients] (article in Czech). Epidemiol Mikrobiol Imunol 63:130–133

    CAS  PubMed  Google Scholar 

  • Hardy RR, Hayakawa K (2005) Development of B cells producing natural antibodies to thymocytes and senescent erythrocytes. Springer Semin Immunopathol 26:363–375

    Article  CAS  PubMed  Google Scholar 

  • Havran W, Allison JP (1988) Developmentally ordered appearance of thymocytes expressing different T cell antigen receptors. Nature 335:443–445

    Article  CAS  PubMed  Google Scholar 

  • Henault J, Riggs JM, Karnell JL et al (2016) Self-reactive IgE exacerbates interferon responses associated with autoimmunity. Nat Immunol 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Herzenberg LA, Herzenberg LA (1989) Toward a layered immune system. Cell 59:953–954

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, ** N, Roark CL et al (2009) The influence of IgE-enhancing and IgE-suppressive γδ T cells changes with exposure to inhaled ovalbumin. J Immunol 183:849–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Heiser RA, Detanico TO et al (2015) γδ T cells affect IL-4 production and B-cell tolerance. Proc Natl Acad Sci USA 112:E39–E48

    Article  CAS  PubMed  Google Scholar 

  • ** N, Roark CL, Miyahara N et al (2009) Allergic airway hyperresponsiveness-enhancing γδ T cells develop in normal untreated mice and fail to produce IL-4/13, unlike Th2 and NKT cells. J Immunol 182:2002–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyanaraman VS, Sarngadharan MG, Nakao Y et al (1982) Natural antibodies to the structural core protein (p24) of the human T-cell leukemia (lymphoma) retrovirus found in sera of leukemia patients in Japan. Proc Natl Acad Sci USA 79:1653–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayed R, Jackson GR, Estes DM et al (2011) Alzheimer’s disease: review of emerging treatment role for intravenous immunoglobulins. J Cent Nerv Syst Dis 3:67–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulik L, Fleming SD, Moratz C et al (2009) Pathogenic natural antibodies recognizing annexin IV are required to develop intestinal ischemia-reperfusion injury. J Immunol 182:5363–5373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafer EM, Rauch J, Andrzejewski C Jr et al (1981) Polyspecific monoclonal lupus autoantibodies reactive with both polynucleotides and phospholipids. J Exp Med 153:897–909

    Article  CAS  PubMed  Google Scholar 

  • Lebon A, Verkaik NJ, Labout JA et al (2011) Natural antibodies against several pneumococcal virulence proteins in children during the pre-pneumococcal-vaccine era: the generation R study. Infect Immun 79:1680–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Waer M, Billiau AD (2009) Xenotransplantation: role of natural immunity. Transpl Immunol 21:70–74

    Article  PubMed  CAS  Google Scholar 

  • Liu E, Moriyama H, Abiru N et al (2002) Anti-peptide autoantibodies and fatal anaphylaxis in NOD mice in response to insulin self-peptides B:9–23 and B:13–23. J Clin Invest 110:1021–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorente M, Sanchez-Palomino S, Manes S et al (1999) Natural human antibodies retrieved by phage display libraries from healthy donors: polyreactivity and recognition of human immunodeficiency virus 1 gp120 epitopes. Scand J Immunol 50:270–279

    Article  CAS  PubMed  Google Scholar 

  • Lobo PI, Brayman KL, Okusa MD (2014) Natural IgM anti-leukocyte autoantibodies (IgM-ALA) regulate inflammation induced by innate and adaptive immune mechanisms. J Clin Immunol 34(Suppl 1):S22–S29

    Article  PubMed  CAS  Google Scholar 

  • Lutz HU, Binder CJ, Kaveri S (2008) Naturally occurring auto-antibodies in homeostasis and disease. Trends Immunol 30:43–51

    Article  PubMed  CAS  Google Scholar 

  • Madi A, Hecht I, Bransburg-Zabary S et al (2009) Organization of the autoantibody repertoire in healthy newborns and adults revealed by system level informatics of antigen microarray data. Proc Natl Acad Sci USA 106:14484–14489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madi A, Bransburg-Zabary S, Kenett DY et al (2012) The natural autoantibody repertoire in newborns and adults: a current overview. Adv Exp Med Biol 750:198–212

    Article  CAS  PubMed  Google Scholar 

  • Marchalonis JJ, Hohman VS, Thomas C et al (1993) Antibody production in sharks and humans: a role for natural antibodies. Dev Comp Immunol 17:41–53

    Article  CAS  PubMed  Google Scholar 

  • Marrack P, Kushnir E, Born W et al (1988) The development of helper T cell precursors in mouse thymus. J Immunol 140:2508–2514

    CAS  PubMed  Google Scholar 

  • Matter MS, Ochsenbein AF (2008) Natural antibodies target virus-antibody complexes to organized lymphoid tissue. Autoimmun Rev 7:480–486

    Article  PubMed  Google Scholar 

  • McCoy KD, Harris NL, Diener P et al (2006) Natural IgE production in the absence of MHC class II cognate help. Immunity 24:329–339

    Article  CAS  PubMed  Google Scholar 

  • Morales-Buenrostro LE, Terasaki PI, Marino-Vazquez LA et al (2008) “Natural” human leukocyte antige antibodies found in nonalloimmunized healthy males. Transplantation 86:1111–1115

    Article  CAS  PubMed  Google Scholar 

  • Narayan K, Sylvia KE, Malhotra N et al (2012) Intrathymic programming of effector fates in three molecularly distinct γδ T cell subtypes. Nat Immunol 13:511–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueira-Martins MF, Mariano M (2010) B-1 cell participation in T-cell-mediated alloimmune response. Immunobiology 215:264–274

    Article  CAS  PubMed  Google Scholar 

  • Notley CA, Baker N, Ehrenstein MR (2010) Secreted IgM enhances B cell receptor signaling and promotes splenic but impairs peritoneal B cell survival. J Immunol 184:3386–3393

    Article  CAS  PubMed  Google Scholar 

  • Nunez-Cruz S, Aguado E, Richelme S et al (2003) LAT regulates γδ T cell homeostasis and differentiation. Nat Immunol 4:999–1008

    Article  CAS  PubMed  Google Scholar 

  • O’Brien RL, Roark CL, Born WK (2009) IL-17-producing γδ T cells. Eur J Immunol 39:662–666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panda S, Ding JL (2015) Natural antibodies bridge innate and adaptive immunity. J Immunol 194:13–20

    Article  CAS  PubMed  Google Scholar 

  • Panda S, Zhang J, Tan NS et al (2013) Natural IgG antibodies provide innate protection against ficolin-opsonized bacteria. EMBO J 32:2905–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker CM, Groh V, Band H et al (1990) Evidence for extrathymic changes in the T cell receptor γ/δ repertoire. J Exp Med 171:1597–1612

    Article  CAS  PubMed  Google Scholar 

  • Pauza CD, Poonia B, Li H et al (2015) γδ T cells in HIV disease: past, present and future. Front Immunol 5:687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perlmutter RM, Kearney JF, Chang SP et al (1985) Developmentally controlled expression of immunoglobulin VH genes. Science 227:1597–1601

    Article  CAS  PubMed  Google Scholar 

  • Pires AE, Afonso AF, Queiros A et al (2010) Treatment with polyclonal immunoglobulin during T-cell reconstitution promotes naive T-cell proliferation. J Immunother 33:618–625

    Article  CAS  PubMed  Google Scholar 

  • Porcelli S, Morita CT, Brenner MB (1992) CD1b restricts the response of human CD4-8-T lymphocytes to a microbial antigen. Nature 360:593–597

    Article  CAS  PubMed  Google Scholar 

  • Posner LE, Robert-Guroff M, Kalyanaraman VS et al (1981) Natural antibodies to the human T cell lymphoma virus in patients with cutaneous T cell lymphomas. J Exp Med 154:333–346

    Article  CAS  PubMed  Google Scholar 

  • Qi Q, **a M, Hu J et al (2009) Enhanced development of CD4+ γδ T cells in the absence of Itk results in elevated IgE production. Blood 114:564–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahyab AS, Alam A, Kapoor A et al (2011) Natural antibody—biochemistry and functions. Glob J Biochem 2:283–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rapaka RR, Ricks DM, Alcorn JF et al (2010) Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina. J Exp Med 207:2907–2919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert-Guroff M, Fahey KA, Maeda M et al (1982) Identification of HTLV p19 specific natural human antibodies by competition with monoclonal antibody. Virology 122:297–305

    Article  CAS  PubMed  Google Scholar 

  • Russano AM, Agea E, Corazzi L et al (2006) Recognition of pollen-derived phosphatidyl-ethanolamine by human CD1d-restricted γδ T cells. J Allergy Clin Immunol 117:1178–1184

    Article  CAS  PubMed  Google Scholar 

  • Sauerborn M, van de Vosse E, Delawi D et al (2011) Natural antibodies against bone morphogenic proteins and interferons in healthy donors and in patients with infections linked to type-1 cytokine responses. J Interferon Cytokine Res 31:661–669

    Article  CAS  PubMed  Google Scholar 

  • Savage HP, Baumgarth N (2015) Characteristics of natural antibody-secreting cells. Ann N Y Acad Sci 1362:132–142

    Article  CAS  PubMed  Google Scholar 

  • Schwartz-Albiez R, Monteiro RC, Rodriguez M et al (2009) Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation. Clin Exp Immunol 158(Suppl 1):43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shilova NV, Navakouski MJ, Huflejt M et al (2011) Changes in the repertoire of natural antibodies caused by immunization with bacterial antigens. Biochemistry 76:862–866

    CAS  PubMed  Google Scholar 

  • Shimomura Y, Mizoguchi E, Sugimoto K et al (2008) Regulatory role of B-1 B cells in chronic colitis. Int Immunol 20:729–737

    Article  CAS  PubMed  Google Scholar 

  • Silvermann GJ (2015) Protective natural antibodies to apoptotic cells: evidence of convergent selection of recurrent innate-like clones. Ann N Y Acad Sci 1362:164–175

    Article  CAS  Google Scholar 

  • Sjoberg BG, Su J, Dahlbom I et al (2009) Low levels of IgM antibodies against phosphorylcholine—a potential risk marker for ischemic stroke in men. Atherosclerosis 203:528–532

    Article  PubMed  CAS  Google Scholar 

  • Skurnik D, Kropec A, Roux D et al (2012) Natural antibodies in normal juman serum inhibit Stapylococcus aureus capsular polysaccharide vaccine efficacy. Clin Infect Dis 55:1188–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonoda KH, Stein-Streilein J (2002) CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell-dependent tolerance. Eur J Immunol 32:848–857

    Article  CAS  PubMed  Google Scholar 

  • Stager S, Alexander J, Kirby AC et al (2003) Natural antibodies and complement are endogenous adjuvants for vaccine-induced CD8+ T-cell responses. Nat Med 9:1287–1292

    Article  PubMed  CAS  Google Scholar 

  • Toth FD, Szabo B, Vaczi L et al (1984) Natural antibodies to simian type-C viruses and human retrovirus HTLV in patients with lymphoid malignancies. Acta Microbiol Hung 31:387–392

    CAS  PubMed  Google Scholar 

  • Tough DF, Sprent J (1998) Lifespan of γ/δ T cells. J Exp Med 187:357–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsiantoulas D, Gruber S, Binder CJ (2013) B-1 cell immunoglobulin directed against oxidation-specific epitopes. Front Immunol 3:415

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuominen A, Miller YI, Hansen LF et al (2006) A natural antibody to oxidized cardiolipin binds to oxidixed loe-density lipoprotein, apoptotic cells, and atherosclerotic lesions. Arterioscler Thromb Vasc Biol 26:2096–2102

    Article  CAS  PubMed  Google Scholar 

  • Turunen SP, Kummu O, Harila K et al (2012) Recognition of Porphyromonas gingivalis gingipain epitopes by natural IgM binding to malondialdehyde modified low-density lipoprotein. PLoS One 7:e34910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulsemer P, Henderson G, Toutounian K et al (2013) Specific humoral immune response to the Thomsen-Friedenreich tumor antigen (CD176) in mice after vaccination with the commensal bacterium Bacteroides ovatus D-6. Cancer Immunol Immunother 62:875–887

    Article  CAS  PubMed  Google Scholar 

  • Vas J, Gronwall C, Silverman GJ (2013) Fundamental roles of the innate-like repertoire of natural antibodies in immune homeostasis. Front Immunol 4:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veljkovic M, Dopsaj V, Stringer WW et al (2010) Aerobic exercise training as a potential source of natural antibodies protective against human immunodeficiency virus-1. Scand J Med Sci Sports 20:469–474

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Turunen SP, Kummu O et al (2013) Natural antibodies of newborns recognize oxidative stress-related malondialdehyde acetaldehyde adducts on apoptotic cells and atherosclerotic plaques. Int Immunol 25:575–587

    Article  CAS  PubMed  Google Scholar 

  • Warrington RJ, Lewis KE (2011) Natural antibodies against nerve growth factor inhibit in vitro prostate cancer cell metastasis. Cancer Immunol Immunother 60:187–195

    Article  CAS  PubMed  Google Scholar 

  • Warrington AE, Rodrigues M (2010) Method of identifying natural antibodies for remyelination. J Clin Immunol 30(Suppl 1):S50–S55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitlock C, Denis K, Robertson D et al (1985) In vitro analysis of murine B-cell development. Ann Rev Immunol 3:213–235

    Article  CAS  Google Scholar 

  • Xu Z, Tian J, Smith JS et al (2008) Clearance of adenovirus by Kupffer cells is mediated by scanvenger receptors, natural antibodies, and complement. J Virol 82:11705–11713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Qiu Q, Tian J et al (2013) Coagulation factor X shields adenovirus type 5 from attack by natural antibodies and complement. Nat Med 19:452–457

    Article  CAS  PubMed  Google Scholar 

  • Zabel F, Kundig TM, Bachmann MF (2013) Virus-induced humoral immunity: on how B cell responses are initiated. Curr Opin Virol 3:357–362

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Wei YL, Huang J et al (2012) Gammadelta T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response. Immunity 37:524–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, ** N, Nakayama M et al (2010) Gamma delta T cell receptors confer autonomous responsiveness to the insulin-peptide B:9-23. J Autoimmun 34:478–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Lawrence Wysocki and Thiago Detanico for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willi K. Born.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Born, W.K., Huang, Y., Zeng, W. et al. A Special Connection between γδ T Cells and Natural Antibodies?. Arch. Immunol. Ther. Exp. 64, 455–462 (2016). https://doi.org/10.1007/s00005-016-0403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-016-0403-0

Keywords

Navigation