Log in

Sphingosine-1-Phosphate: a Master Regulator of Lymphocyte Egress and Immunity

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Sphingosine-1-phosphate (S1P) is a central factor responsible for lymphocyte distribution in the body. S1P is able to control the integrity of various effector cell populations within many lymphoid tissues by directing lymphocyte egress. In this review, we give an overview of the generation and degradation of S1P in specific lymphoid microenvironments. Furthermore, we discuss, sometimes contradictory, the functions of the five S1P receptors on different cells in diverse tissues and give an idea of additional counteracting chemotactic signals for lymphocyte immigration and emigration. We focus special attention to recent discoveries of S1P-specific transporters, like spinster-homolog-2 and the active secretion of S1P by endothelial cells, erythrocytes and platelets. In addition, we describe the microanatomical structures as well as entry and egress routes into lymphoid organs which lymphocytes use for efficient trafficking. Finally, we give an overview of open questions regarding the regulation of lymphocyte homing from primary lymphoid organs to secondary lymphoid organs and back again.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acton SE, Astarita JL, Malhotra D et al (2012) Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 37:276–289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allende ML, Dreier JL, Mandala S et al (2004) Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J Biol Chem 279:15396–15401

    CAS  PubMed  Google Scholar 

  • Allende ML, Zhou D, Kalkofen DN et al (2008) S1P1 receptor expression regulates emergence of NKT cells in peripheral tissues. FASEB J 22:307–315

    CAS  PubMed  Google Scholar 

  • Allende ML, Tuymetova G, Lee BG et al (2010) S1P1 receptor directs the release of immature B cells from bone marrow into blood. J Exp Med 207:1113–1124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alvarez SE, Milstien S, Spiegel S (2007) Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 18:300–307

    CAS  PubMed  Google Scholar 

  • Aoki S, Osada M, Kaneko M et al (2007) Fluid shear stress enhances the sphingosine 1-phosphate responses in cell–cell interactions between platelets and endothelial cells. Biochem Biophys Res Commun 358:1054–1057

    CAS  PubMed  Google Scholar 

  • Arnon TI, Xu Y, Lo C et al (2011) GRK2-dependent S1PR1 desensitization is required for lymphocytes to overcome their attraction to blood. Science 333:1898–1903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Azzali G (2003) Structure, lymphatic vascularization and lymphocyte migration in mucosa-associated lymphoid tissue. Immunol Rev 195:178–189

    PubMed  Google Scholar 

  • Baekkevold ES, Yamanaka T, Palframan RT et al (2001) The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J Exp Med 193:1105–1112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bai A, Hu H, Yeung M et al (2007) Kruppel-like factor 2 controls T cell trafficking by activating l-selectin (CD62L) and sphingosine-1-phosphate receptor 1 transcription. J Immunol 178:7632–7639

    CAS  PubMed  Google Scholar 

  • Bai Z, Cai L, Umemoto E et al (2013) Constitutive lymphocyte transmigration across the basal lamina of high endothelial venules is regulated by the autotaxin/lysophosphatidic acid axis. J Immunol 190:2036–2048

    CAS  PubMed  Google Scholar 

  • Bajenoff M, Glaichenhaus N, Germain RN (2008) Fibroblastic reticular cells guide T lymphocyte entry into and migration within the splenic T cell zone. J Immunol 181:3947–3954

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bankovich AJ, Shiow LR, Cyster JG (2010) CD69 suppresses sphingosine 1-phosphate receptor-1 (S1P1) function through interaction with membrane helix 4. J Biol Chem 285:22328–22337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50 Suppl:S91–S96

    PubMed  Google Scholar 

  • Breart B, Ramos-Perez WD, Mendoza A et al (2011) Lipid phosphate phosphatase 3 enables efficient thymic egress. J Exp Med 208:1267–1278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brinkmann V, Davis MD, Heise CE et al (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277:21453–21457

    CAS  PubMed  Google Scholar 

  • Broxmeyer HE, Orschell CM, Clapp DW et al (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201:1307–1318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carlson CM, Endrizzi BT, Wu J et al (2006) Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442:299–302

    CAS  PubMed  Google Scholar 

  • Chun J, Hla T, Lynch KR et al (2010) International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol Rev 62:579–587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cinamon G, Matloubian M, Lesneski MJ et al (2004) Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat Immunol 5:713–720

    CAS  PubMed  Google Scholar 

  • Cinamon G, Zachariah MA, Lam OM et al (2008) Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol 9:54–62

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30:69–94

    CAS  PubMed  Google Scholar 

  • Dauner JG, Williams IR, Jacob J (2008) Differential microenvironment localization of effector and memory CD8 T cells. J Immunol 180:291–299

    CAS  PubMed  Google Scholar 

  • Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donovan EE, Pelanda R, Torres RM (2010) S1P3 confers differential S1P-induced migration by autoreactive and non-autoreactive immature B cells and is required for normal B-cell development. Eur J Immunol 40:688–698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faroudi M, Hons M, Zachacz A et al (2010) Critical roles for Rac GTPases in T-cell migration to and within lymph nodes. Blood 116:5536–5547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng C, Woodside KJ, Vance BA et al (2002) A potential role for CD69 in thymocyte emigration. Int Immunol 14:535–544

    CAS  PubMed  Google Scholar 

  • Forster R, Schubel A, Breitfeld D et al (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33

    CAS  PubMed  Google Scholar 

  • Foudi A, Jarrier P, Zhang Y et al (2006) Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4−/− chimeric mice. Blood 107:2243–2251

    CAS  PubMed  Google Scholar 

  • Fujii T, Tomita T, Kanai T et al (2008) FTY720 suppresses the development of colitis in lymphoid-null mice by modulating the trafficking of colitogenic CD4+ T cells in bone marrow. Eur J Immunol 38:3290–3303

    CAS  PubMed  Google Scholar 

  • Fukuhara S, Simmons S, Kawamura S et al (2012) The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest 122:1416–1426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Girkontaite I, Sakk V, Wagner M et al (2004) The sphingosine-1-phosphate (S1P) lysophospholipid receptor S1P3 regulates MAdCAM-1+ endothelial cells in splenic marginal sinus organization. J Exp Med 200:1491–1501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Green JA, Cyster JG (2012) S1PR2 links germinal center confinement and growth regulation. Immunol Rev 247:36–51

    PubMed Central  PubMed  Google Scholar 

  • Green JA, Suzuki K, Cho B et al (2011) The sphingosine 1-phosphate receptor S1P(2) maintains the homeostasis of germinal center B cells and promotes niche confinement. Nat Immunol 12:672–680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greenbaum A, Hsu YM, Day RB et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grigorova IL, Schwab SR, Phan TG et al (2009) Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nat Immunol 10:58–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grigorova IL, Panteleev M, Cyster JG (2010) Lymph node cortical sinus organization and relationship to lymphocyte egress dynamics and antigen exposure. Proc Natl Acad Sci USA 107:20447–20452

    CAS  PubMed Central  PubMed  Google Scholar 

  • He Y (1985) Scanning electron microscope studies of the rat mesenteric lymph node with special reference to high-endothelial venules and hitherto unknown lymphatic labyrinth. Arch Histol Jpn 48:1–15

    CAS  PubMed  Google Scholar 

  • Hisano Y, Kobayashi N, Kawahara A et al (2011) The sphingosine 1-phosphate transporter, SPNS2, functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720. J Biol Chem 286:1758–1766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hisano Y, Kobayashi N, Yamaguchi A et al (2012) Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PLoS One 7:e38941

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishii M, Egen JG, Klauschen F et al (2009) Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458:524–528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishii M, Kikuta J, Shimazu Y et al (2010) Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J Exp Med 207:2793–2798

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishii T, Shimazu Y, Nishiyama I et al (2011) The role of sphingosine 1-phosphate in migration of osteoclast precursors; an application of intravital two-photon microscopy. Mol Cells 31:399–403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito K, Anada Y, Tani M et al (2007) Lack of sphingosine 1-phosphate-degrading enzymes in erythrocytes. Biochem Biophys Res Commun 357:212–217

    CAS  PubMed  Google Scholar 

  • Jenne CN, Enders A, Rivera R et al (2009) T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J Exp Med 206:2469–2481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jolly PS, Rosenfeldt HM, Milstien S et al (2002) The roles of sphingosine-1-phosphate in asthma. Mol Immunol 38:1239–1245

    CAS  PubMed  Google Scholar 

  • Juarez JG, Harun N, Thien M et al (2012) Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood 119:707–716

    CAS  PubMed  Google Scholar 

  • Kabashima K, Haynes NM, Xu Y et al (2006) Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. J Exp Med 203:2683–2690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawahara A, Nishi T, Hisano Y et al (2009) The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323:524–527

    CAS  PubMed  Google Scholar 

  • Khanna KM, Aguila CC, Redman JM et al (2008) In situ imaging reveals different responses by naive and memory CD8 T cells to late antigen presentation by lymph node DC after influenza virus infection. Eur J Immunol 38:3304–3315

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kharel Y, Lee S, Snyder AH et al (2005) Sphingosine kinase 2 is required for modulation of lymphocyte traffic by FTY720. J Biol Chem 280:36865–36872

    CAS  PubMed  Google Scholar 

  • Kobayashi N, Nishi T, Hirata T et al (2006) Sphingosine 1-phosphate is released from the cytosol of rat platelets in a carrier-mediated manner. J Lipid Res 47:614–621

    CAS  PubMed  Google Scholar 

  • Kobayashi N, Yamaguchi A, Nishi T (2009) Characterization of the ATP-dependent sphingosine 1-phosphate transporter in rat erythrocytes. J Biol Chem 284:21192–21200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kunisawa J, Kurashima Y, Higuchi M et al (2007a) Sphingosine 1-phosphate dependence in the regulation of lymphocyte trafficking to the gut epithelium. J Exp Med 204:2335–2348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kunisawa J, Takahashi I, Kiyono H (2007b) Intraepithelial lymphocytes: their shared and divergent immunological behaviors in the small and large intestine. Immunol Rev 215:136–153

    CAS  PubMed  Google Scholar 

  • Kupperman E, An S, Osborne N et al (2000) A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406:192–195

    CAS  PubMed  Google Scholar 

  • Kwan J, Killeen N (2004) CCR7 directs the migration of thymocytes into the thymic medulla. J Immunol 172:3999–4007

    CAS  PubMed  Google Scholar 

  • Ledgerwood LG, Lal G, Zhang N et al (2008) The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat Immunol 9:42–53

    CAS  PubMed  Google Scholar 

  • Lee YM, Venkataraman K, Hwang SI et al (2007) A novel method to quantify sphingosine 1-phosphate by immobilized metal affinity chromatography (IMAC). Prostaglandins Other Lipid Mediat 84:154–162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ley K, Laudanna C, Cybulsky MI et al (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    CAS  PubMed  Google Scholar 

  • Liu G, Burns S, Huang G et al (2009) The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nat Immunol 10:769–777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu G, Yang K, Burns S et al (2010) The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nat Immunol 11:1047–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lo CG, Xu Y, Proia RL et al (2005) Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J Exp Med 201:291–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lyons AB, Parish CR (1995) Are murine marginal-zone macrophages the splenic white pulp analog of high endothelial venules? Eur J Immunol 25:3165–3172

    CAS  PubMed  Google Scholar 

  • Maceyka M, Harikumar KB, Milstien S et al (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22:50–60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda Y, Seki N, Sato N et al (2010) Sphingosine 1-phosphate receptor type 1 regulates egress of mature T cells from mouse bone marrow. Int Immunol 22:515–525

    CAS  PubMed  Google Scholar 

  • Mandala S, Hajdu R, Bergstrom J et al (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296:346–349

    CAS  PubMed  Google Scholar 

  • Martin F, Kearney JF (2002) Marginal-zone B cells. Nat Rev Immunol 2:323–335

    CAS  PubMed  Google Scholar 

  • Massberg S, Schaerli P, Knezevic-Maramica I et al (2007) Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131:994–1008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matloubian M, Lo CG, Cinamon G et al (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360

    CAS  PubMed  Google Scholar 

  • Mendoza A, Breart B, Ramos-Perez WD et al (2012) The transporter Spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate. Cell Rep 2:1104–1110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mitra P, Oskeritzian CA, Payne SG et al (2006) Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci USA 103:16394–16399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagahashi M, Kim EY, Yamada A et al (2013) Spns2, a transporter of phosphorylated sphingoid bases, regulates their blood and lymph levels, and the lymphatic network. FASEB J 27:1001–1011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakayama T, Kasprowicz DJ, Yamashita M et al (2002) The generation of mature, single-positive thymocytes in vivo is dysregulated by CD69 blockade or overexpression. J Immunol 168:87–94

    CAS  PubMed  Google Scholar 

  • Neuberger MS (2008) Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 86:124–132

    CAS  PubMed  Google Scholar 

  • Nijnik A, Clare S, Hale C et al (2012) The role of sphingosine-1-phosphate transporter Spns2 in immune system function. J Immunol 189:102–111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nitta T, Murata S, Ueno T et al (2008) Thymic microenvironments for T-cell repertoire formation. Adv Immunol 99:59–94

    CAS  PubMed  Google Scholar 

  • Nombela-Arrieta C, Mempel TR, Soriano SF et al (2007) A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate-mediated egress. J Exp Med 204:497–510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Odumade OA, Weinreich MA, Jameson SC et al (2010) Kruppel-like factor 2 regulates trafficking and homeostasis of gammadelta T cells. J Immunol 184:6060–6066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616

    CAS  PubMed  Google Scholar 

  • Ohtani O, Ohtani Y, Carati CJ et al (2003) Fluid and cellular pathways of rat lymph nodes in relation to lymphatic labyrinths and aquaporin-1 expression. Arch Histol Cytol 66:261–272

    CAS  PubMed  Google Scholar 

  • Okada T, Cyster JG (2007) CC chemokine receptor 7 contributes to Gi-dependent T cell motility in the lymph node. J Immunol 178:2973–2978

    CAS  PubMed  Google Scholar 

  • Okamoto H, Takuwa N, Yokomizo T et al (2000) Inhibitory regulation of Rac activation, membrane ruffling, and cell migration by the G protein-coupled sphingosine-1-phosphate receptor EDG5 but not EDG1 or EDG3. Mol Cell Biol 20:9247–9261

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olivera A, Mizugishi K, Tikhonova A et al (2007) The sphingosine kinase-sphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis. Immunity 26:287–297

    CAS  PubMed  Google Scholar 

  • Osmond DG, Batten SJ (1984) Genesis of B lymphocytes in the bone marrow: extravascular and intravascular localization of surface IgM-bearing cells in mouse bone marrow detected by electron-microscope radioautography after in vivo perfusion of 125I anti-IgM antibody. Am J Anat 170:349–365

    CAS  PubMed  Google Scholar 

  • Pappu R, Schwab SR, Cornelissen I et al (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316:295–298

    CAS  PubMed  Google Scholar 

  • Pereira JP, An J, Xu Y et al (2009) Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nat Immunol 10:403–411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira JP, Xu Y, Cyster JG (2010) A role for S1P and S1P1 in immature-B cell egress from mouse bone marrow. PLoS One 5:e9277

    PubMed Central  PubMed  Google Scholar 

  • Pflicke H, Sixt M (2009) Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med 206:2925–2935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pham TH, Okada T, Matloubian M et al (2008) S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity 28:122–133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pham TH, Baluk P, Xu Y et al (2010) Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med 207:17–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raggers RJ, van Helvoort A, Evers R et al (1999) The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J Cell Sci 112(Pt 3):415–422

    CAS  PubMed  Google Scholar 

  • Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5:560–570

    CAS  PubMed  Google Scholar 

  • Saba JD, Hla T (2004) Point-counterpoint of sphingosine 1-phosphate metabolism. Circ Res 94:724–734

    CAS  PubMed  Google Scholar 

  • Sato K, Malchinkhuu E, Horiuchi Y et al (2007) Critical role of ABCA1 transporter in sphingosine 1-phosphate release from astrocytes. J Neurochem 103:2610–2619

    CAS  PubMed  Google Scholar 

  • Sawicka E, Dubois G, Jarai G et al (2005) The sphingosine 1-phosphate receptor agonist FTY720 differentially affects the sequestration of CD4+/CD25+ T-regulatory cells and enhances their functional activity. J Immunol 175:7973–7980

    CAS  PubMed  Google Scholar 

  • Schwab SR, Pereira JP, Matloubian M et al (2005) Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309:1735–1739

    CAS  PubMed  Google Scholar 

  • Serra M, Saba JD (2010) Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv Enzyme Regul 50:349–362

    PubMed Central  PubMed  Google Scholar 

  • Shi C, Jia T, Mendez-Ferrer S et al (2011) Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating Toll-like receptor ligands. Immunity 34:590–601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shiow LR, Rosen DB, Brdickova N et al (2006) CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440:540–544

    CAS  PubMed  Google Scholar 

  • Sinha RK, Park C, Hwang IY et al (2009) B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis. Immunity 30:434–446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    CAS  PubMed  Google Scholar 

  • Spiegel S, Milstien S (2007) Functions of the multifaceted family of sphingosine kinases and some close relatives. J Biol Chem 282:2125–2129

    CAS  PubMed  Google Scholar 

  • Spiegel S, Milstien S (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11:403–415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugita K, Kabashima K, Sakabe J et al (2010) FTY720 regulates bone marrow egress of eosinophils and modulates late-phase skin reaction in mice. Am J Pathol 177:1881–1887

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugiyama T, Kohara H, Noda M et al (2006) Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988

    CAS  PubMed  Google Scholar 

  • Tani M, Sano T, Ito M et al (2005) Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. J Lipid Res 46:2458–2467

    CAS  PubMed  Google Scholar 

  • Tomura M, Yoshida N, Tanaka J et al (2008) Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc Natl Acad Sci USA 105:10871–10876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ueno T, Saito F, Gray DH et al (2004) CCR7 signals are essential for cortex–medulla migration of develo** thymocytes. J Exp Med 200:493–505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Venkataraman K, Lee YM, Michaud J et al (2008) Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res 102:669–676

    CAS  PubMed Central  PubMed  Google Scholar 

  • von Andrian UH, Mempel TR (2003) Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3:867–878

    Google Scholar 

  • von Boehmer H, Melchers F (2010) Checkpoints in lymphocyte development and autoimmune disease. Nat Immunol 11:14–20

    Google Scholar 

  • Vora KA, Nichols E, Porter G et al (2005) Sphingosine 1-phosphate receptor agonist FTY720-phosphate causes marginal zone B cell displacement. J Leukoc Biol 78:471–480

    CAS  PubMed  Google Scholar 

  • Waldschmidt T, Snapp K, Foy T et al (1992) B-cell subsets defined by the Fc epsilon R. Ann N Y Acad Sci 651:84–98

    CAS  PubMed  Google Scholar 

  • Walzer T, Chiossone L, Chaix J et al (2007) Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat Immunol 8:1337–1344

    CAS  PubMed  Google Scholar 

  • Wang W, Graeler MH, Goetzl EJ (2004) Physiological sphingosine 1-phosphate requirement for optimal activity of mouse CD4+ regulatory T cells. FASEB J 18:1043–1045

    CAS  PubMed  Google Scholar 

  • Wei SH, Rosen H, Matheu MP et al (2005) Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat Immunol 6:1228–1235

    CAS  PubMed  Google Scholar 

  • Weinreich MA, Hogquist KA (2008) Thymic emigration: when and how T cells leave home. J Immunol 181:2265–2270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinreich MA, Takada K, Skon C et al (2009) KLF2 transcription-factor deficiency in T cells results in unrestrained cytokine production and upregulation of bystander chemokine receptors. Immunity 31:122–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang L, Yatomi Y, Miura Y et al (1999) Metabolism and functional effects of sphingolipids in blood cells. Br J Haematol 107:282–293

    CAS  PubMed  Google Scholar 

  • Yatomi Y (2008) Plasma sphingosine 1-phosphate metabolism and analysis. Biochim Biophys Acta 1780:606–611

    CAS  PubMed  Google Scholar 

  • Zachariah MA, Cyster JG (2010) Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science 328:1129–1135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zemann B, Kinzel B, Muller M et al (2006) Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood 107:1454–1458

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Fritz Melchers (Max Planck Institute for Infection Biology, Berlin, Germany) and Dr. Alison Hobro (WPI-Immunology Frontier Research Center, Osaka, Japan) for critically reading the manuscript. This work was supported by Grants-in-Aid for Scientific Research (A) (25253070) and for Scientific Research on Innovative Areas (22113007), by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program) from the Ministry of Education, Science, Sports and Culture of Japan and by the grant from the International Human Frontier Science Program (RGY0077/2011) and by the Kishimoto Foundation, Osaka, Japan.

Conflict of interest

The authors declare no competing financial or commercial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Szandor Simmons or Masaru Ishii.

About this article

Cite this article

Simmons, S., Ishii, M. Sphingosine-1-Phosphate: a Master Regulator of Lymphocyte Egress and Immunity. Arch. Immunol. Ther. Exp. 62, 103–115 (2014). https://doi.org/10.1007/s00005-013-0264-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-013-0264-8

Keywords

Navigation