Log in

Limits to the acclimation of fish muscle

  • Papers
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Summary

Some of the factors which lead to acclimational changes in fish axial muscle are reviewed and discussed: these are temperature, hypoxia, training and habitat. On the fine structural level, the morphological adaptations are seen mainly in mitochondrial and intracellular lipid content and capillary supply of swimming muscle. Cold acclimation, hypoxic conditions and an endurance training programme show a general trend for transition to more aerobic fibre types and a more aerobic type of muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beamish F.W.H. (1978) Swimming capacity. In W.S. Hoar and D.J. Randall, eds. Fish Phsyiology, Vol. VII. New York: Academic Press, pp. 101–85.

    Google Scholar 

  • Bennett A.F. (1978) Activity metabolism of the lower vertebrates. A. Rev. Physiol. 40, 447–69.

    Google Scholar 

  • Bennett A.F. (1990) Thermal dependence of locomotor capacity. Am. J. Physiol. 259, R253–8.

    Google Scholar 

  • Broughton N.M. and Goldspink G. (1978) Biochemical changes in the lateral muscles of roach, Rutilus rutilus from two habitats following exercise. J. Fish Biol. 13, 613–18.

    Google Scholar 

  • Broughton N.M., Goldspink G. and Jones N.V. (1980) The effect of training on the lateral musculature of 0-group roach (Rutilus rutilus (L.)), and their fatigue in subsequent exercise tests. J. Fish Biol. 17, 209–17.

    Google Scholar 

  • Broughton N.M., Goldspink G. and Jones N.V. (1981) Histological differences in the lateral musculature of 0-group roach, Rutilus rutilus (L.) from different habitats. J. Fish Biol. 18, 117–22.

    Google Scholar 

  • Brown M.D., Cotter M.A., Hudlicka O. and Vrbova G. (1976) The effect of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles. Pflügers Arch. ges. Physiol. 361, 241–50.

    Google Scholar 

  • Crockett E.L. and Sidell B.D. (1990) Some pathways of energy metabolism are cold adapted in Antarctic fishes. Physiol. Zool. 63, 472–88.

    Google Scholar 

  • Crockford T. and Johnston I.A. (1990) Temperature acclimation and the expression of contractile protein isoforms in the skeletal muscles of the common carp (Cyprinus carpio L.). J. comp. Physiol. 160, 23–30.

    Google Scholar 

  • Davie P.S., Wells R.M.G. and Tetens V. (1986) Effects of sustained swimming on rainbow trout muscle structure, blood oxygen transport, and lactate dehydrogenase isozymes: evidence for increased aerobic capacity of white muscle. J. exp. Zool. 237, 159–71.

    Google Scholar 

  • Davison W. (1983) Changes in muscle cell ultrastructure following exercise in Salmo trutta Experientia 39, 1017–18.

    Google Scholar 

  • Davison W. and Goldspink G. (1977) The effect of prolonged exercise on the lateral musculature of the brown trout (Salmo trutta). J. exp. Biol. 70, 1–12.

    Google Scholar 

  • Davison W. and Goldspink G. (1978) The effect of training on the swimming muscles of the goldfish (Carassius auratus). J. exp. Biol. 74, 115–22.

    Google Scholar 

  • Egginton S. and Sidell B.D. (1989) Thermal acclimation induces adaptive changes in subcellular structure of fish skeletal muscle. Am. J. Physiol. 256, R1–9.

    Google Scholar 

  • Fleming J.R., Crockford T., Altringham J.D. and Johnston I.A. (1990) Effects of temperature acclimation on muscle relaxation in the carp: a mechanical, biochemical, and ultrastructural study. J. exp. Zool. 255, 286–95.

    Google Scholar 

  • Gamperl A.K., Bryant J. and Stevens E.D. (1988) Effect of sprint training protocol on growth rate, conversion efficiency, food consumption and body composition of rainbow trout, Salmo gairdneri Richardson. J. Fish. Biol. 33, 861–70.

    Google Scholar 

  • Gerlach G.F. Turay L., Malik K.T.A., Lida J., Scutt A. and Goldspink G. (1990) Mechanisms of temperature acclimation in the carp: a molecular biological approach. Am. J. Physiol. 259, R237–44.

    Google Scholar 

  • Gleeson T.T. (1979) The effect of training and captivity on the metabolic capacity of the lizard, Sceloporus occidentalis. J. comp. Physiol. 129, 123–8.

    Google Scholar 

  • Goldspink G. (1985) Malleability of the motor system: a comparative approach. J. exp. Biol. 115, 375–91.

    Google Scholar 

  • Goldspink G., Howells K.F. and Ward P.S. (1976) Effects of exercise on muscle fibre size. In Jokl E., (ed.) Medicine Sport 9. Advances in Exercise Physiology. Basel: Karger, pp. 103–13.

    Google Scholar 

  • Greaser M.L., Moss R.L. and Reiser P.J. (1988) Variation in contractile properties of rabbit single muscle fibres in relation to troponin T isoforms and myosin light chains. J. Physiol. 406, 85–98.

    Google Scholar 

  • Greer-Walker M. (1971) Effect of starvation and exercise on the skeletal muscle fibres of the cod (Gadus morhua L.) and the coalfish (Gadus virens L.) respectively. J. Cons. int. Explor. Mer. 33, 421–7.

    Google Scholar 

  • Greer-Walker M. and Emerson L. (1978) Sustained swimming speeds and myotomal muscle function in the trout, Salmo gairdneri. J. Fish Biol. 13, 475–81.

    Google Scholar 

  • Greer-Walker M. and Pull G.A. (1973) Skeletal muscle function and sustained swimming speeds in the coalfish Gadus virens L. Comp. Biochem. Physiol. 44 495–501.

    Google Scholar 

  • Guderley H. (1990) Functional significance of metabolic responses to thermal acclimation in fish muscle. Am. J. Physiol. 259, R245–52.

    Google Scholar 

  • Guppy M. and Davison W. (1982) The hare and the tortoise: metabolic strategies in cardiac and skeletal muscles of the skink and the chameleon. J. exp. Zool. 220, 289–95.

    Google Scholar 

  • Hanson R.C. and Stanley J.F. (1970) The effects of hypophysectomy and temperature acclimation upon the metabolism of the central mud minnow, Umbra limi (Kirtland). Comp. Biochem. Physiol. 33, 871–9.

    Google Scholar 

  • Hazel J.R. and Prosser C.L. (1974) Molecular mechanisms of temperature compensation in poikilotherms. Physiol. Rev. 54, 620–77.

    Google Scholar 

  • Heap S.P. and Goldspink G. (1986) Alterations to the swimming performance of carp, Cyprinus carpio, as a result of temperature acclimation. J. Fish Biol. 29, 747–53.

    Google Scholar 

  • Heap S.P., Watt P.W. and Goldspink G. (1987) Contractile properties of goldfish fin muscles following temperature acclimation. J. comp. Physiol. 157, 219–25.

    Google Scholar 

  • Hinterleitner S., Huber M., Lackner R. and Wieser W. (1992) Systemic and enzymatic responses to endurance training in two cyprinid species with different life styles (Teleostei: Cyprinidae). Can. J. Fish. Aquat. Sci. 49, 110–15.

    Google Scholar 

  • Holeton G.F. and Randall D.J. (1967) Changes in blood pressure in the rainbow trout during hypoxia. J. exp. Biol. 46, 297–305.

    Google Scholar 

  • Holloszy J.O. and Booth F.W. (1976) Biochemical adaptations to endurance exercise in muscle. A. Rev. Physiol. 38, 273–91.

    Google Scholar 

  • Holopainen I.J. and Hyvärinen H. (1985) Ecology and physiology of crucian carp (Carassius carassius L.) in small Finnish ponds with anoxic conditions in winter. Verh. int. Verein. Limnol. 22, 2566–70.

    Google Scholar 

  • Hoppeler H. (1986) Exercise-induced ultrastructural changes in skeletal muscle. Int. J. Sports Med. 7, 187–204.

    Google Scholar 

  • Hoppeler H., Howald H., Conley K.E., Lindstedt S.L., Claassen H., Vock P. and Weibel E.R. (1985) Endurance training in humans: aerobic capacity and structure of skeletal muscle. J. appl. Physiol. 59, 320–27.

    Google Scholar 

  • Hughes G.M. (1973) Respiratory responses to hypoxia in fish. Am. Zool. 13, 475–89.

    Google Scholar 

  • Hwang G.C., Watabe S. and Hashimoto K. (1990) Changes in carp myosin ATPase induced by temperature acclimation. J. comp. Physiol. 160, 233–9.

    Google Scholar 

  • Johnston I.A. (1982a) Capillarization, oxygen diffusion distances and mitochondrial content of carp muscles following acclimation to summer and winter temperatures. Cell Tissue Res. 222, 325–37.

    Google Scholar 

  • Johnston I.A. (1982b) Quantitative analyses of ultrastructure and vascularization of the slow muscle fibres of the anchovy. Tissue Cell 14, 319–28.

    Google Scholar 

  • Johnston I.A. and Bernard L.M. (1982a) Routine oxygen consumption and characteristics of the myotomal muscle in tench: effects of long-term acclimation to hypoxia. Cell Tissue Res. 227, 161–77.

    Google Scholar 

  • Johnston I.A. and Bernard L.M. (1982b) Ultrastructure and metabolism of skeletal muscle fibres in the tench: effects of long-term acclimation to hypoxia. Cell Tissue Res 227, 179–99.

    Google Scholar 

  • Johnston I.A. and Bernard L.M. (1983) Utilization of the ethanol pathway in carp following exposure to anoxia. J. exp. Biol. 104, 73–8.

    Google Scholar 

  • Johnston I.A. and Bernard L.M. (1984) Quantitative study of capillary supply to the skeletal muscles of crucian carp Carassius carassius L.: effects of hypoxic acclimation. Physiol. Zool. 57, 9–18.

    Google Scholar 

  • Johnston I.A. and Goldspink G. (1973a) A study of the swimming performance of the crucian carp (Carassius carassius (L.)) in relation to the effects of exercise and recovery on biochemical changes in the myotomal muscles and liver. J. Fish Biol. 5, 249–60.

    Google Scholar 

  • Johnston I.A. and Goldspink G. (1973b) Quantitative studies of muscle glycogen utilization during sustained swimming in crucian carp (Carassius carassius L.). J. exp. Biol. 59, 607–15.

    Google Scholar 

  • Johnston I.A. and Lucking M. (1978) Temperature induced variation in the distribution of different types of muscle fibre in the goldfish (Carassius auratus). J. comp. Physiol. 124, 111–16.

    Google Scholar 

  • Johnston I.A. and Maitland B. (1980) Temperature acclimation in crucian carp (Carassius carassius L.); morphometric analyses of muscle fibre ultrastructure. J. Fish. Biol. 17, 113–25.

    Google Scholar 

  • Johnston I.A. and Moon T.W. (1980a) Endurance exercise training in the fast and slow muscles of a teleost fish (Pollachius virens). J. comp. Physiol. 135, 147–56.

    Google Scholar 

  • Johnston I.A. and Moon T.W. (1980b) Exercise training in skeletal muscle of brook trout (Salvelinus fontinalis). J. exp. Biol. 87, 177–94.

    Google Scholar 

  • Johnston I.A., Davison W. and Goldspink G. (1975) Adaptations in Mg2+-activated myofibrillar ATPase activity induced by temperature acclimation. FEBS Lett. 50, 293–5.

    Google Scholar 

  • Johnston I.A., Bernard L.M. and Maloiy G.M. (1983) Aquatic and aerial respiration rates, muscle capillary supply and mitochondrial volume density in the air breathing catfish (Clarias mossambicus), acclimated to either aerated or hypoxic water. J. exp. Biol. 105, 317–38.

    Google Scholar 

  • Johnston I.A., Sidell B.D. and Driedzic W.R. (1985) Force-velocity characteristics and metabolism of carp muscle fibres following temperature acclimation. J. exp. Biol. 119, 239–49.

    Google Scholar 

  • Johnston I.A., Fleming J.D. and Crockford T. (1990) Thermal acclimation and muscle contractile properties in cyprinid fish. Am. J. Physiol. 259, R231–6.

    Google Scholar 

  • Jones P.L. and Sidell B.D. (1982) Metabolic responses of striped bass (Morone saxatilis) to temperature acclimation. II. Alterations in metabolic carbon sources and distributions of fibre types in locomotory muscle. J. exp. Zool. 219, 163–71.

    Google Scholar 

  • Klicka J. (1965) Temperature acclimation in goldfish: lack of evidence for hormonal involvement. Physiol. Zool. 38, 177–89.

    Google Scholar 

  • Lackner R., Wieser W., Huber M. and Dalla Via J. (1988) Responses of intermediary metabolism to acute handling stress and recovery in untrained and trained Leuciscus cephalus (Cyprinidae, Teleostei). J. exp. Biol. 140, 393–404.

    Google Scholar 

  • Leon K.A. (1986) Effect of exercise on feed consumption, growth, food conversion, and stamina of brook trout. Progve. Fish Cult. 48, 43–6.

    Google Scholar 

  • Lomholt J.P. and Johansen K. (1979) Hypoxia acclimation in carp: how it affects O2 uptake, ventilation, and O2 extraction from water. Physiol. Zool. 52, 38–49.

    Google Scholar 

  • Love R.M., Munro L.J. and Robertson I. (1977) Adaptation of the dark muscle of cod to swimming activity. J. Fish Biol. 11, 431–6.

    Google Scholar 

  • Mourik J., Raeven P., Steur K. and Addink A.O.T. (1982) Anaerobic metabolism of red skeletal muscle of goldfish, Carassius auratus (L.). Mitochondrial produced acetaldehyde as anaerobic electron acceptor. FEBS lett. 137, 111–14.

    Google Scholar 

  • Nichol C.J.M. and Johnston I.A. (1981) Energy metabolism of fast- and slow-twitch muscles in the rat: thyroid hormone induced changes. J. comp. Physiol. 142, 465–72.

    Google Scholar 

  • Palzenberger M. and Pohla H. (1989) Estimates of respiratory areas of fish gills: a critical view. Progr. Zool. 35, 569–72.

    Google Scholar 

  • Pearson M.P., Spriet L.L. and Stevens E.D. (1990) Effect of sprint training on swin performance and white muscle metabolism during exercise and recovery in rainbow trout (Salmo gairdneri). J. exp. Biol. 149, 45–60.

    Google Scholar 

  • Penney R.K. and Goldspink G. (1981a) Compensation limits of fish muscle myofibrillar ATPase enzyme to environmental temperature. J. therm. Biol. 4, 269–72.

    Google Scholar 

  • Penney R.K. and Goldspink G. (1981b) Temperature adaptation by the myotomal muscle of fish. J. therm. Biol. 6, 297–306.

    Google Scholar 

  • Penney R.K. and Goldspink G. (1981c) Regulatory proteins and thermostability of myofibrillar ATPase in acclimated goldfish. Comp. Biochem. J. 178, 373–9.

    Google Scholar 

  • Pette D. and Staron R.S. (1990) Cellular and molecular diversities of mammalian skeletal muscle fibres. Rev. Physiol. Biochem. Pharmacol. 116, 1–76.

    Google Scholar 

  • Rome L.C. (1990) Influence of temperature on muscle recruitment and muscle function in vivo. Am. J. Physiol. 259, R210–22.

    Google Scholar 

  • Rome L.C. and Bennett A.F. (1990) Introduction: influence of temperature on muscle and locomotor performance. Am. J. Physiol. 259, R189–90.

    Google Scholar 

  • Rome L.C., Loughna P.T. and Goldspink G. (1984) Muscle fibre activity in carp as a function of swim speed and muscle temperature. Am. J. Physiol. 247, R272–8.

    Google Scholar 

  • Rome L.C., Loughna P.T. and Goldspink G. (1985) Temperature acclimation: improved sustained swimming performance in carp at low temperatures. Science 228, 194–6.

    Google Scholar 

  • Sänger A.M. (1992) Effects of training on axial muscle of two cyprinid species: Chondrostoma nasus (L.) and Leuciscus cephalus (L.). J. Fish Biol. 40, 637–46.

    Google Scholar 

  • Sänger A.M. and Lackner R. (1991) Training effects on the fine structure of fish axial muscle. J. Musc. Res. Cell Motility 12, 83.

    Google Scholar 

  • Sänger A.M., Kim Z.S. and Adam H. (1990) The fine structure of muscle fibres of roach, Rutilus rutilus (L.), and chub, Leuciscus cephalus (L.), Cyprinidae, Teleostei: interspecific differences and effects of habitat and season. J. Fish Biol. 36, 205–13.

    Google Scholar 

  • Shoubridge E.A. and Hochachka P.M. (1980) Ethanol: novel end-product of vertebrate anaerobic metabolism. Science 209, 308–9.

    Google Scholar 

  • Sidell B.D. (1980) Response of goldfish (Carassius auratus L.) muscle to acclimation temperature: alterations in biochemistry and proportions of different fibre types. Physiol. Zool. 53, 98–107.

    Google Scholar 

  • Timmons B.A., Araujo J. and Thomas T.R. (1985) Fat utilization enhanced by exercise in a cold environment. Med. Sci. Sports Exerc. 17, 673–8.

    Google Scholar 

  • Van den Thillart G. (1982) Adaptations of fish energy metabolism to hypoxia and anoxia. Molec. Physiol. 2, 49–61.

    Google Scholar 

  • Van den Thillart G., Kesbeke F. and Van Waarde A. (1980) Anaerobic energy metabolism of goldfish, Carassius auratus (L.): influence of hypoxia and anoxia on phosphorylated compounds and glycogen. J. comp. Physiol. 136, 45–52.

    Google Scholar 

  • Van den Thillart G., Van Waarde A., Muller H.J. Erkelens C., Addink A. and Lugtenburg J. (1989) Fish muscle energy metabolism measured by in vivo 31P-NMR during anoxia and recovery. Am. J. Physiol. 256, R922–9.

    Google Scholar 

  • Van Waarde A., Van den Thillart G., Erkelens C., Addink A. and Lugtenburg J. (1990) Functional coupling of glycolysis and phosphocreatine utilization in anoxic fish muscle. J. biol. Chem. 265, 914–23.

    Google Scholar 

  • Wells R.M.G., Grigg G.C., Beard L.A. and Summers G. (1989) Hypoxic responses in a fish from a stable environment: blood oxygen transport in the antarctic fish Pagothenia borchgrevinki. J. exp. Biol. 141, 97–111.

    Google Scholar 

  • Winder W., Baldwin K.M., Terjung R.L. and Holloszy J.O. (1975) Effects of thyroid hormone administration on skeletal muscle mitochondria. Am. J. Physiol. 228, 1341–5.

    Google Scholar 

  • Wissing J. and Zebe E. (1988) The anaerobic metabolism of the bitterling Rhodeus amarus (Cyprinidae, Teleostei). Comp. Biochem. Physiol. 89, 299–303.

    Google Scholar 

  • Wood S.C. and Johansen K. (1972) Adaptations to hypoxia by increased HbO2 affinity and decreased red cell ATP concentration. Nature New Biol. 237, 278–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sänger, A.M. Limits to the acclimation of fish muscle. Rev Fish Biol Fisheries 3, 1–15 (1993). https://doi.org/10.1007/BF00043295

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00043295

Keywords

Navigation