Lager brewing yeast

  • Chapter
  • First Online:
Comparative Genomics

Part of the book series: Topics in Current Genetics ((TCG,volume 15))

Abstract

Lager brewing yeast is a group of closely related strains of Saccharomyces pastorianus/S. carlsbergensis used for lager beer production all over the world, making it one of the most important industrial yeasts. The pure cultivation of yeast was established in the early 1880’s with immediate practical success for lager brewing yeast. However, almost a century would elapse before its genetics could be approached in detail, despite the development of the genetics of Saccharomyces cerevisiae, starting in the 1930’s. During the last few decades, the complex nature of the genome of lager brewing yeast was elucidated, showing that it is a hybrid between Saccharomyces cerevisiae and another Saccharomyces species.

Here we review current knowledge on genetics and genomics of lager brewing yeast and introduce the most updated information about its whole genome sequence. These studies throw further light on the complex chromosomal structure of this yeast. They may also open the door for the elucidation of how inter-species hybrids maintain their chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • 1. Andersen TH, Hoffmann L, Grifone R, Nilsson-Tillgren T, Kielland-Brandt MC (2000) Brewing yeast genetics. EBC Monograph 28, Fachverlag Hans Carl, Nürnberg, pp 140-147

    Google Scholar 

  • 2. De Barros Lopes M, Bellon JR, Shirley NJ, Ganter PF (2002) Evidence for multiple interspecific hybridization in Saccharomyces sensu stricto species. FEMS Yeast Res 1:323-331

    Google Scholar 

  • 3. Bond U, Neal C, Donnelly D, James TC (2004) Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation. Curr Genet 45:360-370

    Article  PubMed  CAS  Google Scholar 

  • 4. Bramsted B, Hansen J (2003) Controlling the level of hydrogen sulphide production in lager brewing yeast by the introduction of heterologous enzymatic pathways for cysteine biosynthesis. Proc 29th Conf Eur Brew Conv, Dublin, Chapter 51, pp 554-562

    Google Scholar 

  • 5. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630-634

    Article  PubMed  CAS  Google Scholar 

  • 6. Børsting C, Hummel R, Schultz ER, Rose TM, Pedersen MB, Knudsen J, Kristiansen K (1997) Saccharomyces carlsbergensis contains two functional genes encoding the acyl-CoA binding protein, one similar to the ACB1 gene from S. cerevisiae and one identical to the ACB1 gene from S. monacensis. Yeast 13:1409-1421

    Article  Google Scholar 

  • 7. Casaregola S, Nguyen HV, Lapathitis G, Kotyk A,Gaillardin C (2001) Analysis of the constitution of the beer yeast genome by PCR sequencing and subtelomeric sequence hybridization. Int J Syst Evol Microbiol 51:1607-1618

    PubMed  CAS  Google Scholar 

  • 8. Casey GP (1986a) Cloning and analysis of two alleles of the ILV3 gene from Saccharomyces carlsbergensis. Carlsberg Res Commun 51:327-341

    CAS  Google Scholar 

  • 9. Casey GP (1986b) Molecular and genetic analysis of chromosomes X in Saccharomyces carlsbergensis. Carlsberg Res Commun 51:343-362

    CAS  Google Scholar 

  • 10. Corran HS (1975) A History of Brewing. David & Charles, Newton Abbott, UK

    Google Scholar 

  • 11. Delneri D, Colson I, Grammenoudi S, Roberts IN, Louis EJ, Oliver SG (2003) Engineering evolution to study speciation in yeasts. Nature 422:68-72

    Article  PubMed  CAS  Google Scholar 

  • 12. Fischer G, James SA, Roberts IN, Oliver SG, Louis EJ (2000) Chromosomal evolution in Saccharomyces. Nature 405:451-454

    Article  PubMed  CAS  Google Scholar 

  • 13. Foury F, Roganti T, Lecrenier N, Purnelle B (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440:325-331

    Article  PubMed  CAS  Google Scholar 

  • 14. Fujii T, Nagasawa N, Iwamatsu A, Bogaki T, Tamai Y, Hamachi M (1994) Molecular cloning, sequence analysis, and expression of the yeast alcohol acetyltransferase gene. Appl Env Microbiol 60:2786-2792

    CAS  Google Scholar 

  • 15. Fujii T, Yoshimoto H, Nagasawa N, Bogaki T, Tamai Y, Hamachi M (1996) Nucleotide sequences of alcohol acetyltransferase genes from lager brewing yeast, Saccharomyces carlsbergensis. Yeast 12:593-598

    Article  PubMed  CAS  Google Scholar 

  • 16. Gjermansen C (1983) Mutagenesis and genetic transformation of meiotic segregants of lager yeast. Carlsberg Res Commun 48:557-565

    Google Scholar 

  • 17. Gjermansen, C (1991) Comparison of genes in Saccharomyces cerevisiae and Saccharomyces carlsbergensis. PhD thesis, University of Copenhagen, Copenhagen

    Google Scholar 

  • 18. Gjermansen C, Sigsgaard P (1981) Construction of a hybrid brewing strain of Saccharomyces carlsbergensis by mating of meiotic segregants. Carlsberg Res Commun 46:1-11

    CAS  Google Scholar 

  • 19. Gjermansen C, Nilsson-Tillgren T, Petersen JGL, Kielland-Brandt MC, Sigsgaard P, Holmberg S (1988) Towards diacetyl-less brewers yeast. Influence of ilv2 and ilv5 mutations. J Basic Microbiol 28:175-183

    Article  PubMed  CAS  Google Scholar 

  • 20. Gonçalves P, Rodrigues de Sousa H, Spencer-Martins I (2000) FSY1, a novel gene encoding a specific fructose/H+ symporter in the type strain of Saccharomyces carlsbergensis. J Bacteriol 182:5628-5630

    Article  Google Scholar 

  • 21. Groth C, Petersen RF, Piskur J (2000) Diversity in organization and the origin of gene orders in the mitochondrial DNA molecules of the genus Saccharomyces. Mol Biol Evol 17:1833-1841

    PubMed  CAS  Google Scholar 

  • 22. Hansen EC (1883) Recherches sur la physiologie et la morphologie des ferments alcooliques V. Méthodes pour obtenir des cultures pures de Saccharomyces et de mikroorganismes analogues. Compt Rend Trav Lab Carlsberg 2:92-105

    Google Scholar 

  • 23. Hansen EC (1908) Recherches sur la physiologie et la morphologie des ferments alcooliques XIII. Nouvelles études sur des levures de brasserie à fermentation basse. Compt Rend Trav Lab Carlsberg 7:179-217

    CAS  Google Scholar 

  • 24. Hansen J (1999) Inactivation of MXR1 abolishes formation of dimethyl sulfide from dimethyl sulfoxide in Saccharomyces cerevisiae. Appl Env Microbiol 65:3915-3919

    CAS  Google Scholar 

  • 25. Hansen J, Kielland-Brandt MC (1994) Saccharomyces carlsbergensis contains two functional MET2 alleles similar to homologues from S. cerevisiae and S. monacensis. Gene 140:33-40

    Article  PubMed  CAS  Google Scholar 

  • 26. Hansen J, Kielland-Brandt MC (1995) Genetic control of sulphite production in brewer's yeast. Proc 25th Congr Eur Brew Conv 1995, Brussels, pp 319-328

    Google Scholar 

  • 27. Hansen J, Kielland-Brandt MC (1996a) Inactivation of MET2 in brewer's yeast increases the level of sulphite in beer. J Biotechnol 50:75-87

    Article  PubMed  CAS  Google Scholar 

  • 28. Hansen J, Kielland-Brandt MC (1996b) Inactivation of MET10 in brewer's yeast specifically increases SO2 formation during beer production. Nature Biotechnol 14:1587-1591

    Article  CAS  Google Scholar 

  • 29. Hansen J, Kielland-Brandt MC (2003) Brewer's yeast: genetic structure and targets for improvement. In: H de Winde (ed) Functional Genetics of Industrial Yeasts, Topics in Current Genetics 2, Springer, Berlin, pp 143-170

    Google Scholar 

  • 30. Hansen J, Cherest H, Kielland-Brandt MC (1994) Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the a subunit of sulphite reductase and specify potential binding sites for FAD and NADPH. J Bacteriol 176:6050-6058

    PubMed  CAS  Google Scholar 

  • 31. Hansen J, Bruun SV, Bech LM, Gjermansen C (2002) Brewing yeast expression of the MXR1 gene is the major determinant for the content of dimethyl sulphide in beer. FEMS Yeast Res 2:137-149

    PubMed  CAS  Google Scholar 

  • 32. Hoffman L (2000) The defective sporulation of lager brewing yeast. PhD thesis, University of Copenhagen, Copenhagen

    Google Scholar 

  • 33. Holmberg S (1982) Genetic differences between Saccharomyces carlsbergensis and S. cerevisiae II. Restriction endonuclease analysis of genes in chromosome III. Carlsberg Res Commun 47:233-244

    CAS  Google Scholar 

  • 34. James TC, Campbell S, Donnelly D, Bond U (2003) Transcription profile of brewery yeast under fermentation conditions. J Appl Microbiol 94:432-448

    Article  PubMed  CAS  Google Scholar 

  • 35. Johannesen PF, Hansen J (2002) Differential transcriptional regulation of gene homoeologues in a fungal species hybrid. FEMS Yeast Res 1:315-322

    PubMed  CAS  Google Scholar 

  • 36. Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241-254

    Article  PubMed  CAS  Google Scholar 

  • 37. Kielland-Brandt MC, Gjermansen C, Nilsson-Tillgren T, Holmberg S (1989) Yeast breeding. Proc 22nd Congr Eur Brew Conv, Zürich, pp 37-47

    Google Scholar 

  • 38. Kielland-Brandt MC, Nilsson-Tillgren T, Gjermansen C, Holmberg S, Pedersen MB (1995) Genetics of brewing yeasts. In: Wheals AE, Rose AH, Harrison JS (eds) The Yeasts., 2nd edn, Vol 6, Academic Press, London, UK, pp 223-254

    Google Scholar 

  • 39. Kodama Y, Fukui N, Ashikari T, Shibano Y (1995) Improvement of maltose fermentation efficiency: Constitutive expression of MAL genes in brewing yeast. J Am Soc Brew Chem 53:24-29

    CAS  Google Scholar 

  • 40. Kodama Y, Omura F, Ashikari T (2001) Isolation and characterization of a gene specific to lager brewing yeast that encodes a branched-chain amino acid permease. Appl Environ Microbiol 67:3455-3462

    Article  PubMed  CAS  Google Scholar 

  • 41. Langkjaer RB, Nielsen ML, Daugaard PR, Liu W, Piskur J (2000) Yeast chromosomes have been significantly reshaped during their evolutionary history. J Mol Biol. 304:271-288

    Google Scholar 

  • 42. Masneuf I, Hansen J, Groth C, Piskur J, Dubourdieu D (1998) New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains. Appl Environ Microbiol. 64:3887-3892

    Google Scholar 

  • 43. Nakao Y, Kodama Y, Nakamura N, Ito T, Hattori M, Shiba T, Ashikari T (2003) Whole genome sequence of a lager brewing yeast. Proc 29th Congr Eur Brew Conv, Dublin, Chapter 48, pp 524-530

    Google Scholar 

  • 44. Nilsson-Tillgren T, Gjermansen C, Kielland-Brandt MC, Petersen JGL, Holmberg S (1981) Genetic differences between Saccharomyces carlsbergensis and S. cerevisiae. Analysis of chromosome III by single chromosome transfer. Carlsberg Res Commun 46:65-76

    CAS  Google Scholar 

  • 45. Nilsson-Tillgren T, Gjermansen C, Holmberg S, Petersen JGL, Kielland-Brandt MC (1986) Analysis of chromosome V and the ILV1 gene from Saccharomyces carlsbergensis. Carlsberg Res Commun 51:309-326

    CAS  Google Scholar 

  • 46. Olesen K, Felding T, Gjermansen C, Hansen J (2002) The dynamics of the Saccharomyces carlsbergensis brewing yeast transcriptome during a production-scale lager beer fermentation. FEMS Yeast Res 2:563-573

    PubMed  CAS  Google Scholar 

  • 47. Omura F, Shibano Y, Fukui N, Nakatani K (1995) Reduction of hydrogen sulphide production in brewing yeast by constitutive expression of MET25 gene. J Am Soc Brew Chem 53:58-62

    CAS  Google Scholar 

  • 48. Panoutsopoulou K, Wu J, Hayes A, Butler P, Oliver SG (2001) Yeast transcriptome analysis during the brewing process. Yeast 18:S300

    Google Scholar 

  • 49. Pedersen MB (1985) DNA sequence polymorphisms in the genus Saccharomyces II Analysis of the genes RDN1, HIS4, LEU2 and Ty transposable elements in Carlsberg, Tuborg and 22 Bavarian brewing strains. Carlsberg Res Commun 50:263-272

    CAS  Google Scholar 

  • 50. Pedersen MB (1986a) DNA sequence polymorphism in the genus Saccharomyces III. Restriction endonuclease fragment patterns of chromosomal regions in brewing and other yeast strains. Carlsberg Res Commun 51:163-183

    CAS  Google Scholar 

  • 51. Pedersen MB (1986b) DNA sequence polymorphism in the genus Saccharomyces IV. Homologous chromosomes III in Saccharomyces bayanus, S. carlsbergensis, and S. uvarum. Carlsberg Res Commun 51:185-202

    Article  CAS  Google Scholar 

  • 52. Petersen JGL, Nilsson-Tillgren T, Kielland-Brandt MC, Gjermansen C, Holmberg S (1987) Structural heterozygosis at genes ILV2 and ILV5 in Saccharomyces carlsbergensis. Curr Genet 12:167-174

    Article  CAS  Google Scholar 

  • 53. Piskur J (1994) Inheritance of the yeast mitochondrial genome. Plasmid. 31:229-241

    Google Scholar 

  • 54. Porter G, Westmoreland J, Priebe S, Resnick MA (1996) Homologous and homeologous intermolecular gene conversion are not differentially affected by mutations in the DNA damage or the mismatch repair genes RAD1, RAD50, RAD51, RAD52, RAD54, PMS1, and MSH2. Genetics 143:755-767

    PubMed  CAS  Google Scholar 

  • 55. Rainieri S, Zambonelli C, Kaneko Y (2003) Saccharomyces sensu stricto: Systematics, genetic diversity, and evolution. J Biosci Bioeng 96:1-9

    PubMed  CAS  Google Scholar 

  • 56. Rainieri S, Kodama Y, Nakao Y, Ashikari T, Mikata K, Kaneko Y (2004) Analysis of the species Saccharomyces bayanus and Saccharomyces pastorianus; hybrid lines and pure genetic lines. Abstr 10th International Congress for Culture Collections (ICCC), Tsukuba, pp 534-535

    Google Scholar 

  • 57. Rodrigues de Sousa H, Madeira-Lopes A, Spencer-Martins I (1995) The significance of active fructose transport and maximum temperature for growth in the taxonomy of Saccharomyces sensu stricto. Syst Appl Microbiol 18:44-51

    Google Scholar 

  • 58. Ryu SL, Murooka Y, Kaneko Y (1996) Genomic reorganization between two sibling yeast species, Saccharomyces bayanus and Saccharomyces cerevisiae. Yeast 12:757-764

    Article  PubMed  CAS  Google Scholar 

  • 59. Sato M, Yokoi S, Watari J, Takashio M (2003) Model of an inactivation of the Lg-FLO1 gene by translocation of chromosome. Proc 29th Congr Eur Brew Conv, Dublin, Chapter 61, pp 656-668

    Google Scholar 

  • 60. Scherer S, Davis RW (1979) Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc Natl Acad Sci USA 76:4951-4955

    Article  PubMed  CAS  Google Scholar 

  • 61. Tamai Y, Momma T, Yoshimoto H, Kaneko Y (1998) Co-existence of two types of chromosome in the bottom fermenting yeast, Saccharomyces pastorianus. Yeast 14:923-933

    Article  PubMed  CAS  Google Scholar 

  • 62. Tamai Y, Tanaka K, Umemoto N, Tomizuka K, Kaneko Y (2000) Diversity of the HO gene encoding an endonuclease for mating type conversion in the bottom fermenting yeast Saccharomyces pastorianus. Yeast 16:1335-1343

    Article  PubMed  CAS  Google Scholar 

  • 63. Vaughan-Martini A, Kurtzman CP (1985) Deoxyribonucleic acid relatedness among species of Saccharomyces sensu stricto. Int J Syst Bacteriol 35:508-511

    Article  Google Scholar 

  • 64. Vaughan-Martini A, Martini A (1987) Three newly delimited species of Saccharomyces sensu stricto. Antonie v Leeuwenhoek 53:77-84

    Article  Google Scholar 

  • 65. Wolfe K (2003) Evolutionary biology: Speciation reversal. Nature 422:25-26

    Article  PubMed  CAS  Google Scholar 

  • 66. Yamagishi H, Ogata T (1999) Chromosomal structures of bottom fermenting yeasts. Syst Appl Microbiol 22:341-353

    PubMed  CAS  Google Scholar 

  • 67. Yarrow D (1984) Saccharomyces Meyen ex Reess. In: NJW Kreger-van Rij (ed) The Yeasts, a Taxonomic Study., 3rd edn, Elsevier Science Publishers, Amsterdam, pp 379-395

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiko Kodama .

Editor information

Per Sunnerhagen Jure Piskur

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Kodama, Y., Kielland-Brandt, M.C., Hansen, J. Lager brewing yeast. In: Sunnerhagen, P., Piskur, J. (eds) Comparative Genomics. Topics in Current Genetics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b106370

Download citation

Publish with us

Policies and ethics

Navigation