Log in

Detection and evaluation of rotavirus surveillance methods as viral indicator in the aquatic environments

  • Environmental Microbiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Group A rotaviruses (RVAs) have been introduced as the most important causative agents of acute gastroenteritis in the young children. One of every 260 children born globally will die due to rotavirus (RV) before 5 years old. The RV is widely known as a viral indicator for health (fecal contamination) because this pathogen has a high treatment resistance nature, which has been listed as a relevant waterborne pathogen by the World Health Organization (WHO). Therefore, monitoring of environmental is important, and RV is one of the best-known indicators for monitoring. It has been proved that common standards for microbiological water quality do not guarantee the absence of viruses. On the other hand, in order to recover and determine RV quantity within water, standard methods are scarce. Therefore, dependable prediction of RV quantities in water sample is crucial to be able to improve supervision efficiency of the treatment procedure, precise quantitative evaluation of the microbial risks as well as microbiological water safety. Hence, this study aimed to introduce approaches to detecting and controlling RV in environmental waters, and discussed the challenges faced to enable a clear perception on the ubiquity of the RV within different types of water across the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rodrigues C, Cunha MÂ (2017) Assessment of the microbiological quality of recreational waters: indicators and methods. Euro-Mediterr J Environ Integr 2:25

    Google Scholar 

  2. Damanka SA, Kwofie S, Dennis FE, Lartey BL, Agbemabiese CA, Doan YH, Adiku TK, Katayama K, Enweronu-Laryea CC, Armah GE (2019) Whole genome characterization and evolutionary analysis of OP354-like P[8] rotavirus a strains isolated from Ghanaian children with diarrhoea. PLoS One 14(6):e0218348

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pitkänen O (2017) Rotavirus whole genome sequencing with next-generation sequencing

  4. Liu J, Lurain K, Sobuz SU, Begum S, Kumburu H, Gratz J, Kibiki G, Toney D, Gautam R, Bowen MD, Petri WA Jr, Haque R, Houpt ER (2015) Molecular genoty** and quantitation assay for rotavirus surveillance. J Virol Methods 213:157–163

    CAS  PubMed  Google Scholar 

  5. Atabakhsh P, Kargar M, Doosti A (2020) Molecular detection and genoty** of group a rotavirus in two wastewater treatment plants, Iran. Braz J Microbiol 51(1):197–203

  6. Hamza IA, Jurzik UK, Wilhelm M (2011) Methods to detect infectious human enteric viruses in environmental water samples. Int J Hyg Environ Health 214:424–436

    PubMed  PubMed Central  Google Scholar 

  7. Francy DS, Stelzer EA, Bushon RN et al (2011) Quantifying viruses and Bacteria in wastewater-results, interpretation methods, and quality control. Scientific Investigations Report

    Google Scholar 

  8. Gibson KE, Opryszko MC, Schissler JT, Guo Y, Schwab KJ (2011) Evaluation of human enteric viruses in surface water and drinking water resources in southern Ghana. J Trop Med Hyg 84:20–29

    CAS  Google Scholar 

  9. Vivier JC, Ehlers MM, Grabow WOK (2009) Detection of enteroviruses in treated drinking water. Water Res 38(1):2699–2705

    Google Scholar 

  10. Fout GS, Borchardt MA, Kieke BA. Jr, Karim MR (2017) Damanka SA, Kwofie S, Dennis FE et al (2019) Whole genome characterization and evolutionary analysis of OP354-like P[8] rotavirus a strains isolated from Ghanaian children with diarrhoea. PLoS One, 14(6): e0218348

  11. Ye XY, Ming X, Zhang YL, **ao WQ, Huang XN, Cao YG, Gu KD (2012) Real-time PCR detection of enteric viruses in source water and treated drinking water in Wuhan, China. Curr Microbiol 65:244–253

    CAS  PubMed  Google Scholar 

  12. Assis ASF, Cruz LT, Ferreira AS, Bessa ME, de Oliveira Pinto MA, Vieira CB, Otenio MH, Miagostovich MP, da Rosa e Silva ML (2015) Relationship between viral detection and turbidity in a watershed contaminated with group a rotavirus. Environ Sci Pollut Res 22:6886–6897

    CAS  Google Scholar 

  13. Mukaratirwa A, Berejena C, Nziramasanga P, Ticklay I, Gonah A, Nathoo K, Manangazira P, Mangwanya D, Marembo J, Mwenda JM, Weldegebriel G, Seheri M, Tate JE, Yen C, Parashar U, Mujuru H (2018) Distribution of rotavirus genotypes associated with acute diarrhoea in Zimbabwean children less than five years old before and after rotavirus vaccine introduction. Vaccine 36(47):7248–7255

    PubMed  Google Scholar 

  14. Nag VL, Saurabh K (2017) Genomic diversity in rotavirus and the current scenario of rotavirus vaccines: a brief overview. Arch Paediatr Dev Pathol 1(4):1018

    Google Scholar 

  15. Organization WH (2016) Estimated rotavirus deaths for children under 5 years of age: 2013, 215 000

  16. Crawford SE, Ramani S, Tate JE, Parashar UD, Svensson L, Hagbom M, Franco MA, Greenberg HB, O’Ryan M, Kang G, Desselberger U, Estes MK (2017) Rotavirus infection. Nat Rev Dis Primer 3:17083. https://doi.org/10.1038/nrdp.2017.83

    Article  Google Scholar 

  17. Pang XL, Lee B, Boroumand N, Leblanc B, Preiksaitis JK, Yu IPCC (2004) Increased detection of rotavirus using a real time reverse transcription-polymerase chain reaction (RT-PCR) assay in stool specimens from children with diarrhea. J Med Virol 72(3):496–501

    CAS  PubMed  Google Scholar 

  18. EL-Senousy WM, Barakat AB, Ghanem HE, Kamel MA (2013) Molecular epidemiology of human adenoviruses and rotaviruses as candidate viral indicators in the Egyptian sewage and water samples. J World Appl Sci 27(10): 1235–1247

  19. He XQ, Cheng L, Zhang DY, Li W, **e XM, Ma M, Wang ZJ (2009) First molecular detection of group a rotaviruses in drinking water sources in Bei**g, China. Bull Environ Contam Toxicol 83:120–124

    CAS  PubMed  Google Scholar 

  20. Pang XL, Lee BE, Pabbaraju K, Gabos S, Craik S, Payment P, Neumann N (2012) Pre-analytical and analytical procedures for the detection of enteric viruses and enterovirus in water samples. J Virol Methods 184(1–2):77–83

    CAS  PubMed  Google Scholar 

  21. Vecchia AD, Fleck JD, Kluge M, Comerlato J, Bergamaschi B, Luz RB, Arantes TS, Silva JVS, Thewes MR, Spilki FR (2012) Assessment of enteric viruses in a sewage treatment plant located in Porto Alegre, southern Brazil. Braz J Biol 72(4):839–846

    CAS  PubMed  Google Scholar 

  22. Inker LA, Soto-Beltran M, Bright KR (2011) New method using a positively charged microporous filter and ultrafiltration for concentration of viruses from tap water. Appl Environ Microbiol 77:3500–3506

    Google Scholar 

  23. Osuolale O, Okoh A (2017) Human enteric bacteria and viruses in five wastewater treatment plants in the eastern cape, South Africa. J Infect Public Health 10(5):541–547

    PubMed  Google Scholar 

  24. Motayo BO, Adeniji AJ, Faneye AO (2016) First molecular detection and VP7 (G) genoty** of group a rotavirus by semi-nested RT-PCR from sewage in Nigeria. Rev Inst Med Trop São Paulo 58:74

    PubMed  PubMed Central  Google Scholar 

  25. Li D, Gu AZ, Yang W, He M, Hu XH, Shi HC (2010) An integrated cell culture and reverse transcription quantitative PCR assay for detection of infectious rotaviruses in environmental waters. J Microbiol Methods 82(1):59–63

    CAS  PubMed  Google Scholar 

  26. Soltan MA, Tsai YL, Lee PA, Tsai CF, Chang HG, Wang HT, Wilkes RP (2016) Comparison of electron microscopy, ELISA, real time RT-PCR and insulated isothermal RT-PCR for the detection of rotavirus group a (RVA) in feces of different animal species. J Virol Methods 235:99–104

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kiulia NM, Hofstra N, Vermeulen LC, Obara MA, Medema G, Rose JB (2015) Global occurrence and emission of rotaviruses to surface waters. Pathogens 4(2):229–255

    PubMed  PubMed Central  Google Scholar 

  28. Ruggeri FM, Bonomo P, Ianiro G, Battistone A, Delogu R, Germinario C, Chironna M, Triassi M, Campagnuolo R, Cicala A, Giammanco GM, Castiglia P, Serra C, Gaggioli A, Fiore L (2015) Rotavirus genotypes in sewage treatment plants and in children hospitalized with acute diarrhea in Italy in 2010 and 2011. Appl Environ Microbiol 81(1):241–249

    PubMed  Google Scholar 

  29. Yousuf FA, Siddiqui R, Khan NA (2017) Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan. Rev Inst Med Trop São Paulo 59:e32

    PubMed  PubMed Central  Google Scholar 

  30. Ahmad T, Arshad N, Adnan F, Sadaf Zaidi N, Shahid MT, Zahoor U, Afzal MS, Anjum S (2016) Prevalence of rotavirus, adenovirus, hepatitis a virus and enterovirus in water samples collected from different region of Peshawar, Pakistan. Ann Agric Environ Med 23(4):576–580

    PubMed  Google Scholar 

  31. Elmahdy EM, Fongaro G, Schissi CD, Petrucio MM, Barardi CR (2016) Enteric viruses in surface water and sediment samples from the catchment area of Peri lagoon, Santa Catarina state, Brazil. J Water Health 14(1):142–154

    CAS  PubMed  Google Scholar 

  32. Kluge M, Fleck JD, Soliman MC, Luz RB, Fabres RB, Comerlato J, Silva JVS, Staggemeier R, Vecchia AD, Capalonga R, Oliveira AB, Henzel A, Rigotto C, Spilki FR (2014) Human adenovirus (HAdV), human enterovirus (HEV), and genogroup a rotavirus (GARV) in tap water in southern Brazil. J Water Health 12:526–532

    CAS  PubMed  Google Scholar 

  33. Vieira CB, de Abreu CA, de Jesus MS, LUZ SL, Wyn-Jones P, Kay D, Vargha M, Miagostovich MP (2016) Viruses surveillance under different season scenarios of the Negro River Basin, Amazonia, Brazil. Food Enviro Virol 8(1):57–69

    Google Scholar 

  34. Assis ASF, Cruz LT, Fumian TM, Miagostovich MP, Drumond BP, e Silva ML (2018) Adenovirus and rotavirus recovery from a treated effluent through an optimized skimmed-milk flocculation method. Environ Sci Pollut Res, 25 (17): 17025–17032

  35. Osman YA, EL-Senousy WM, El-Morsi AA, Rashed MK (2015) Efficiency of traditional water treatment plant and compact units in removing viruses. Int Appl Sci Biotechnol 3(3): 528–536

  36. Ferguson AS, Layton AC, Mailloux BJ, Culligan PJ, Williams DE, Smartt AE, Sayler GS, Feighery J, McKay LD, Knappett PSK, Alexandrova E, Arbit T, Emch M, Escamilla V, Ahmed KM, Alam MJ, Streatfield PK, Yunus M, van Geen A (2012) Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater. Sci Total Environ 431:314–322

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kargar M, Javdani N, Najafi A, Tahamtan Y (2013) First molecular detection of group a rotavirus in urban and hospital sewage systems by nested-RT PCR in Shiraz, Iran. J Environ Health Sci Eng 11(1):4

    PubMed  PubMed Central  Google Scholar 

  38. Kitajima M, Iker BC, Pepper IL, Gerba CP (2014) Relative abundance and treatment reduction of viruses during wastewater treatment processes-identification of potential viral indicators. Sci Total Environ 1:488–489

    Google Scholar 

  39. Zhou N, LVD, Wang S, Lin X, Bi Z, Wang H, Wang P, Zhung H, Tao Z, Hou P, Song Y, Xu A (2016) Continuous detection and genetic diversity of human rotavirus a in sewage in eastern China, 2013-2014. Virol J 13 (1): 153

  40. Barril PA, Fumian T, Prez VE, Gil PI, Martinez L, Giordano M, Masachessi G, Isa MB, Ferreyra LJ, Re VE (2015) Rotavirus seasonality in urban sewage from Argentina: effect of meteorological variables on the viral load and the genetic diversity. Environ Res 138:409–415

    CAS  PubMed  Google Scholar 

  41. Tort LF, Victoria M, Lizasoain A, Garcia M, Berois M, Cristina J, Leite JP, Gomez MM, Miagostovich MP, Colina R (2015) Detection of common, emerging and uncommon VP4, and VP7 human group a rotavirus genotypes from urban sewage samples in Uruguay. Food Environ Virol 7(4):342–353

    CAS  PubMed  Google Scholar 

  42. Kittigul L, Panjangampatthana A, Rupprom K, Pombubpa K (2014) Genetic diversity of rotavirus strains circulating in environmental water and bivalve shellfish in Thailand. Int Environ Res Public Health 11(2):1299–1311

    Google Scholar 

  43. Thai V.T, Kim W (2013) Prevalence of rotavirus genotypes in South Korea in 1989-2009: implications for a nationwide rotavirus vaccine program. Korean J Pediatr 56(11): 465–473

  44. Atabakhsh P, Kargar M, Doosti A (2019) Molecular surveillance of human rotaviruses in drinking water and investigation of the efficiency of their removal in Isfahan water treatment plant. Environ Monit Assess 191(12):759

    CAS  PubMed  Google Scholar 

  45. Usonis V, Ivaskeviciene I, Desslberger U, Rodrigo C (2012) The unpredictable diversity of co-circulating rotavirus types in Europe and the possible impact of universal mass vaccination programmes on rotavirus genotype incidence. Vaccine 30:4596–4605

    PubMed  Google Scholar 

  46. Falman JC (2017) Poliovirus and rotavirus detection in water: evaluating and applying environmental surveillance methods. Department of Environmental and Occupational Health Sciences

    Google Scholar 

  47. ICTV (2020) International committee on taxonomy of viruses

  48. Durmaz R, Kalaycioglu AT, Acar S, Bakkaloglu Z, Karagoz A, Korukluoglu G, Ertek M, Torunoglu MA (2014) Prevalence of rotavirus genotypes in children younger than 5 years of age before the introduction of a universal rotavirus vaccination program: report of rotavirus surveillance in Turkey. PLoS One 9(12):113674

    Google Scholar 

  49. Da Silva M, Victoria M, Miagostovich M (2016) Rotavirus and astroviruses. Global Water Pathogens Project

    Google Scholar 

  50. Kargar M, Najafi A, Zandi K, Hashemizadeh Z (2011) Genotypic distribution of rotavirus strains causing severe gastroenteritis in children under 5 years old in Borazjan, Iran. Afr J Microbiol Res 5(19):2936–2941

    CAS  Google Scholar 

  51. El-Senousy WM, Abu Senna AS, Mohsen NA, Hasan SF, Sidkey NM (2020) Clinical and environmental surveillance of rotavirus common genotypes showed high prevalence of common P genotypes in Egypt. Food Environ Virol 12:99–117

    CAS  PubMed  Google Scholar 

  52. Ibfelt T, Frandsen T, Permin A, Andersen LP, Schultz AC (2016) Test and validation of methods to sample and detect human virus from environmental surfaces using norovirus as a model virus. J Hosp Infect 92(4):378–384

    CAS  PubMed  Google Scholar 

  53. Organization WH (2009) Manual of rotavirus detection and characterization methods. World Health Organization, Geneva

    Google Scholar 

  54. Sano D, Amarasiri M, Hata A, Watanabe T, Katayama H (2016) Risk management of viral infectious diseases in wastewater reclamation and reuse. Environ Int 91:220–229

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hmaied F, Jebri S, Saavedra MER, Yahya M, Amiri I, Lucena F, Hamdi M (2016) Comparison of two concentration methods for the molecular detection of enteroviruses in raw and treated sewage. Curr Microbiol 72:12–18

    CAS  PubMed  Google Scholar 

  56. Hovi T, Stevik M, Partanen H, Kangas A (2001) Poliovirus surveillance by examining sewage specimens. Quantitative recovery of virus after introduction into sewerage at remote upstream location. Epidemiol Infect 127(1):101–106

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Inker LA, Gerba CP, Bright KR (2012) Concentration and recovery of viruses from water: a comprehensive review. Food Environ virol 4(2):41–67

    Google Scholar 

  58. Cashdollar JL, Wymer L (2013) Methods for primary concentration of viruses from water samples: a review and meta-analysis of recent studies. J Appl Microbiol 115(1):1–11

    CAS  PubMed  Google Scholar 

  59. Karim RM, Rhodes RE, Brinkman N, Wymer L, Fout Shay G (2009) New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water. Appl Environ Microbiol 75:2393–2399

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Verheyen J, Timmen-Wego M, Laudirn R, Boussaad I, Sen S, Koc A, Uesbeck A, Mazou F, Pfister H (2009) Detection of adenoviruses and rotaviruses in drinking water sources used in rural areas of Benin, West Africa. Appl Environ Microbiol 75(9):2798–2801

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kargar M, Khodadadi P, Najafi A, Ansari H (2014) Predominance of rotavirus G8 genotype in hospitalized children with acute gastroenteritis in Yasuj, Iran. Eur Rev Med Pharmacol Sci 18(5):699–702

    CAS  PubMed  Google Scholar 

  62. Najafi A, Kargar M, Jafarpour (2012) Burden and ty** of rotavirus group a in children with acute gastroenteritis in Shiraz, southern Iran. Iran Red Crescent Med J 14(9): 531–540

  63. Rames E, Roiko A, Stratton H, Macdonald J (2016) Technical aspects of using human adenovirus as a viral water quality indicator. Water Res 96:308–326

    CAS  PubMed  Google Scholar 

  64. Atabakhsh P, Kargar M, Doosti A (2019) Molecular monitoring effectiveness of human adenovirus removal in Isfahan water treatment plant. Iran J Health Environ 12(2):235–246

    Google Scholar 

  65. Lee DY, Leung KY, Lee H, Habash MB (2016) Simultaneous detection of selected enteric viruses in water samples by multiplex quantitative PCR. Water, air, & soil pollution 227(4):107

  66. Asami T, Katayama H, Torrey JR, Visvanathan C, Furumai H (2016) Evaluation of virus removal efficiency of coagulation-sedimentation and rapid sand filtration processes in a drinking water treatment plant in Bangkok, Thailand. J Water Res 101:84–94

    CAS  Google Scholar 

  67. Guarino A, Casola A, Bruzzese E, Saini M, Nitsch L, Rubino A (1996) Human serum immunoglobulin counteracts rotaviral infection in Caco-2 cells. Pediatr Res 40:881–887

    CAS  PubMed  Google Scholar 

  68. Hamza IA, Jurzik L, Uberla K, Wilhelm M (2011) Methods to detect infectious human enteric viruses in environmental water samples. Int J Hyg environ health 214(6):424–436. https://doi.org/10.1016/j.ijheh.2011.07.014

    Article  PubMed  PubMed Central  Google Scholar 

  69. Villamizar-Gallardo RA, Osma JF, Ortiz OO (2017) New technique for direct fluoroimmunomagnetic detection of rotavirus in water samples. J Water Health 15(6):932–941

    PubMed  Google Scholar 

  70. Javdani N, Kargar M, Ghodsi M (2012) The assessment of efficiency of eliminating group a human rotaviruses in urban and hospitalized sewage refining system of Shiraz city. Med Sci 22(3):226–231

    Google Scholar 

  71. Zafari E, Soleimanjahi H, Mohammadi A, Teimoori A, Mahravani H (2018) Molecular and biological characterization of the human-bovine rotavirus based reassortant rotavirus. Microb Pathog 121:65–69

    CAS  PubMed  Google Scholar 

  72. Ruggeri FM, Delogu R, Petouchoff T, Tchermenskaia O, De Petris S, Fiore L (2011) Molecular characterization of rotavirus strains from children with diarrhea in Italy, 2007-2009. J Med Virol 83(9):1657–1668

    CAS  PubMed  Google Scholar 

  73. Yang W, Gu AZ, Zeng SY, Li D, He M, Shi HC (2011) Development of a combined immunomagnetic separation and quantitative reverse transcription-PCR assay for sensitive detection of infectious rotavirus in water samples. J Microbiol Methods 84:447–453

    CAS  PubMed  Google Scholar 

  74. Nakata S, Petrie B, Calomeni EP, Estes MK (1987) Electron microscopy procedure influences detection of rotaviruses. J Clin Microbiol 25(10):1902–1906

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Marshall JA (2012) Role of transmission electron microscopy in the study of gastroenteritis viruses. Microbiology Australia 33(2):85–86

    Google Scholar 

  76. Ito E, Sato T, Sano D, Utagawa E, Kato T (2018) Virus particle detection by convolutional neural network in transmission electron microscopy images. Food Environ Virol 10(2):201–208

    CAS  PubMed  Google Scholar 

  77. Chigor VN, Okoh AI (2012) Quantitative RT-PCR detection of hepatitis a virus, rotaviruses and enteroviruses in the Buffalo River and source water dams in the eastern Cape Province of South Africa. Int J Environ Res Public Health 9:4017–4032

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ibrahim C, Hassen A, Pothier P, Mejri S, Hammami S (2018) Molecular detection and genotypic characterization of enteric adenoviruses in a hospital wastewater. Environ Sci Pollut Res 25:10977–10987

    CAS  Google Scholar 

  79. Davis HB (2012) Detection of human rotavirus in southern Ontario source waters. Master Sci Environ Biol 1

  80. Chhabra P, Gregoricus N, Weinberg GA, Halasa N, Chappell J, Hassan F, Selvarangan R, Mijatovic-Rustempasic S, Ward ML, Bowen M, Payne DC, Vinjé J (2017) Comparison of three multiplex gastrointestinal platforms for the detection of gastroenteritis viruses. J Clin Virol 95:66–71. https://doi.org/10.1016/j.jcv.2017.08.012

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nordgren J, Bucardo F, Svensson L, Lindgren P (2010) Novel light-upon-extension real-time PCR assay for simultaneous detection, quantification, and genogrou** of group a rotavirus. J Clin Microbiol 48(5):1859–1865. https://doi.org/10.1128/JCM.02288-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Logan C, O’Leary JJ, O’Sullivan N (2006) Real-time reverse transcription-PCR for detection of rotavirus and adenovirus as causative agents of acute viral gastroenteritis in children. J Clin Microbiol 44(9):3189–3195

    CAS  PubMed  PubMed Central  Google Scholar 

  83. El Galil KH, El Sokkary MA, Kheira SM, Salazar AM, Yates MV, Chen W, Mulchndani A (2004) Combined immunomagnetic separation-molecular beacon-reverse transcription-PCR assay for detection of hepatitis a virus from environmental samples. Appl Environ Microbiol 70(7):4371–4374

    Google Scholar 

  84. Kargar M, Sadeghipour S, Mahmoudabadi BZ, Nategh R (2009) Comparison of integrated cell culture RT-PCR & cell culture methods for detection of enteroviruses. Iranian J Publ Health 38(3):90–96

    CAS  Google Scholar 

  85. Dias J, Pinto RN, Vieira CB, de Abreu CA (2018) Detection and quantification of human adenovirus (HAdV), JC polyomavirus (JCPyV) and hepatitis a virus (HAV) in recreational waters of Niterói, Rio de Janeiro, Brazil. Mar Pollut Bull 133:240–245

    CAS  PubMed  Google Scholar 

  86. Pitkanen O (2017) Rotavirus whole genome sequencing with next-generation sequencing

  87. Dung TT, Duy PT, Sessions OM et al (2017) A universal genome sequencing method for rotavirus a from human fecal samples which identifies segment reassortment and multi-genotype mixed infection. BMC Genomic. (18):324

Download references

Acknowledgments

The authors are grateful to the Islamic Azad University of Jahrom for their executive support of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kargar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Fernando R. Spilki

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atabakhsh, P., Kargar, M. & Doosti, A. Detection and evaluation of rotavirus surveillance methods as viral indicator in the aquatic environments. Braz J Microbiol 52, 811–820 (2021). https://doi.org/10.1007/s42770-020-00417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00417-8

Keywords

Navigation