Log in

Groundwater potential map** using analytical hierarchical process: a study on Md. Bazar Block of Birbhum District, West Bengal

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Delineation of groundwater potential zones based on the scientific technique is essential for the management of groundwater resource and landuse planning. In the present study groundwater potential map has been prepared using the analytical hierarchical process in GIS and remote sensing environment. The AHP method has used to determine the weights of various thematic layers. With the help of linear combination method these weights of thematic layers are added to identify the different groundwater potential zones in the study area, namely ‘very poor’, ‘poor’, ‘fair’, ‘good’ and ‘excellent’. However, the area having very poor, poor, fair, good and excellent groundwater potential is about 34.474, 75.216, 81.484, 81.484 and 40.742 km2 respectively. The groundwater potential zone map has finally validated using the ROC and trend surface analysis technique incorporating the well yield data of 25 pum** wells and groundwater depth data. ROC result shows the area under curve for the AHP model is 0.7776 which corresponds to the prediction accuracy of 77.76% and linear regression coefficient of groundwater depth and its corresponding groundwater potential index is 0.548. Taking together, it could be argued that the AHP model has performed good prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vaux, H. (2011). Groundwater under stress: The importance of management. Environmental Earth Sciences, 62, 19–23.

    Article  Google Scholar 

  2. Mukherjee, P., Singh, C. K., & Mukherjee, S. (2012). Delineation of groundwater potential zones in arid region of India—A remote sensing and GIS approach. Water Resources Management, 26, 2643–2672.

    Article  Google Scholar 

  3. Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2010). Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18, 1713–1728. doi:10.1007/s10040-010-0631-z.

    Article  Google Scholar 

  4. Israil, M., Al-hadithi, M., & Singhal, D. C. (2006). Application of a resistivity survey and geographical information system (GIS) analysis for hydrogeological zoning of a piedmont area, Himalayan foothill region, India. Hydrogeology Journal, 14, 753–759. doi:10.1007/s10040-005-0483-0.

    Article  Google Scholar 

  5. Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2010). Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18, 1713–1728. doi:10.1007/s10040-010-0631-z.

    Article  Google Scholar 

  6. Brunner, P., Bauer, P., Eugster, M., & Kinzelbach, W. (2004). Using remote sensing to regionalize local rainfall recharge rates obtained from the chloride method. Journal of Hydrology, 294(4), 241–250.

    Article  Google Scholar 

  7. Bandyopadhyay, S., Srivastava, S. K., Jha, M. K., Hegde, V. S., & Jayaraman, V. (2007). Harnessing earth observation (EO) capabilities in hydrogeology: An Indian perspective. Hydrogeology Journal, 15(1), 155–158.

    Article  Google Scholar 

  8. Jha, M. K., & Chowdary, V. M. (2007). Challenges of using remote sensing and GIS in develo** nations. Hydrogeology Journal, 15(1), 197–200.

    Article  Google Scholar 

  9. Dar, I. A., Sankar, K., & Dar, M. A. (2010). Remote sensing technology and geographic information system modeling: An integrated approach towards the map** of groundwater potential zones in Hardrock terrain, Mamundiyar basin. Journal of Hydrology, 394, 285–295.

    Article  Google Scholar 

  10. Saaty, T. L. (1980). The analytic hierarchy process (pp. 513–516). New York, NY: McGraw-Hill.

    Google Scholar 

  11. Yang, C. L., Chuang. S. P., Huang, R. H., & Tai, C. C. (2008). Location selection based on AHP/ANP approach. In International conference on industrial engineering and engineering management, Singapore (pp. 1148–1153). IEEE.

  12. Saaty, T. L. (1996). Decision making with dependence and feedback, the analytic network process. Pittsburgh: RWS Publications.

    Google Scholar 

  13. Dagdeviren, M., & Yüksel, İ. (2007). Using the analytic network process (ANP) in a SWOT analysis—A case study for a textile firm. Information Sciences, 177(16), 3364–3382.

    Article  Google Scholar 

  14. Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing. GIS and MIF techniques. Geoscience Frontiers, 3(2), 189–196.

    Article  Google Scholar 

  15. Shekhar, S., & Pandey, A. C. (2015). Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto International, 30(4), 402–421. doi:10.1080/10106049.2014.894584.

    Article  Google Scholar 

  16. Adiat, K. A. N., Nawawi, M. N. M., & Abdullah, K. (2012). Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool—A case of predicting potential zones of sustainable groundwater resources. Journal of Hydrology, 440, 75–89.

    Article  Google Scholar 

  17. Nampak, H., Pradhan, B., & Manap, M. A. (2014). Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513, 283–300.

    Article  Google Scholar 

  18. Pourghasemi, H. R., Moradi, H. R., & FatemiAghda, S. M. (2013). Landslide susceptibility map** by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Natural Hazards, 69, 749–779.

    Article  Google Scholar 

  19. Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modeling: A review of hydrological, geomorphological and biological applications. Hydrological Processes, 5, 3–30.

    Article  Google Scholar 

  20. Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55(3), 467–475.

    Article  Google Scholar 

  21. Sree Devi, P. D. S., Srinivasulu, S., & Raju, K. K. (2001). Hydrogeomorphological and groundwater prospects of the Pageru river basin by using remote sensing data. Environmental Geology, 40, 1088–1094. doi:10.1007/s002540100295.

    Article  Google Scholar 

  22. Pradhan, B., Singh, R. P., & Buchroithner, M. F. (2006). Estimation of stress and its use in evaluation of landslide prone regions using remote sensing data. Advances in Space Research, 37, 698–709.

    Article  Google Scholar 

  23. Malczewski, J. (1999). GIS and multicriteria decision analysis. New York: Wiley.

    Google Scholar 

  24. Rahmati, O., Nazari, S. A., Mahmoodi, N., & Mahdavi, M. (2014). Assessment of the contribution of N-fertilizers to nitrate pollution of groundwater in western Iran (case study: Ghorveh–Dehgelan Aquifer). Water Quality, Exposure, and Health, 7(2), 143–151. doi:10.1007/s12403-014-0135-5.

    Article  Google Scholar 

  25. Chung, J. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard map**. Natural Hazards, 30(3), 451–472.

    Article  Google Scholar 

  26. Sarkar, K., & Sarkar, I. (2015). Introduction to quantitative analysis in geography and geology: An approach to numerical data analysis and description (p. 632p). Kolkata: Progatishil Prakashak.

    Google Scholar 

  27. Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility map**: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197.

    Article  Google Scholar 

  28. Akgün, A., Dag, S., & Bulut, F. (2008). Landslide susceptibility map** for a landslide prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environmental Geology, 54, 1127–1143.

    Article  Google Scholar 

  29. Egan, J. P. (1975). Signal detection theory and ROC analysis (pp. 266–268). New York: Academic.

    Google Scholar 

  30. Negnevitsky, M. (2002). Artificial intelligence: A guide to intelligent systems. Harlow: Pearson.

    Google Scholar 

  31. Mathew, J., Jha, V. K., & Rawat, G. S. (2009). Landslide susceptibility zonation map** and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslide, 6, 17–26.

    Article  Google Scholar 

  32. Cervi, F., Berti, M., Borgatti, L., Ronchetti, F., Manenti, F., & Corsini, A. (2010). Comparing predictive capability of statistical and deterministic methods for landslide susceptibility map**: A case study in the northern Apennines (Reggio Emilia Province, Italy). Landslide, 7(4), 433–444.

    Article  Google Scholar 

  33. Yesilnacar, E. K. (2005). The application of computational intelligence to landslide susceptibility map** in Turkey. PhD Thesis, University of Melbourne, Australia, 423 pp.

  34. Pourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility map** at Haraz watershed, Iran. Natural Hazards, 63(2), 965–996.

    Article  Google Scholar 

  35. Mohammady, M., Pourghasemi, H. R., & Pradhan, B. (2012). Landslide susceptibility map** at Golestan Province, Iran: A comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models. Journal of Asian Earth Sciences, 61, 221–236.

    Article  Google Scholar 

  36. Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility map** using GIS. Computers & Geosciences, 51, 350–365.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thanks to Central Ground Water Board Ministry of Water Resources Government of India for providing required information regarding groundwater depth. Additionally, author would like to acknowledge all of the agencies and individuals specially, Survey of India, Geological Survey of India and USGS for obtaining the maps required for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Saha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S. Groundwater potential map** using analytical hierarchical process: a study on Md. Bazar Block of Birbhum District, West Bengal. Spat. Inf. Res. 25, 615–626 (2017). https://doi.org/10.1007/s41324-017-0127-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-017-0127-1

Keywords

Navigation