Log in

Mitigation of greenhouse gases released from mining activities: A review

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Climate changes that occur as a result of global warming caused by increasing amounts of greenhouse gases (GHGs) released into the atmosphere are an alarming issue. Controlling greenhouse gas emissions is critically important for the current and future status of mining activities. The mining industry is one of the significant contributors of greenhouse gases. In essence, anthropogenic greenhouse gases are emitted directly during the actual mining and indirectly released by the energy-intensive activities associated with mining equipment, ore transport, and the processing industry. Therefore, we reviewed both direct and indirect GHG emissions to analyze how mining contributes to climate change. In addition, we showed how climate change impacts mineral production. This assessment was performed using a GHG inventory model for the gases released from mines undergoing different product life cycles. We also elucidate the key issues and various research outcomes to demonstrate how the mining industry and policymakers can mitigate GHG emission from the mining sector. The review concludes with an overview of GHG release reduction and mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R.D. Srivastava, Advances in CO2 capture technology—The U.S. department of energy;’s carbon sequestration program, Int. J. Greenhouse Gas Control, 2(2008), No. 1, p. 9.

    Article  CAS  Google Scholar 

  2. S. Peralta, A.P. Sasmito, and M. Kumral, Reliability effect on energy consumption and greenhouse gas emissions of mining hauling fleet towards sustainable mining, J. Sustainable Min., 15(2016), No. 3, p. 85.

    Article  Google Scholar 

  3. N. Mirovitskaya and W.L. Ascher, Guide to Sustainable Development and Environmental Policy, Duke University Press, Durham, NC, 2002.

    Book  Google Scholar 

  4. T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, B. Jamsranjav, M. Fukuda, and T. Troxler, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, the Intergovernmental Panel on Climate Change, Switzerland, 2014.

    Google Scholar 

  5. M. Meinshausen, N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame, and M.R. Allen, Greenhouse-gas emission targets for limiting global warming to 2°C, Nature, 458(2009), No. 7242, p. 1158.

    Article  CAS  Google Scholar 

  6. International Energy Agency, Beyond Kyoto: Energy Dynamics and Climate Stabilisation, OECD Publishing, Paris, 2002.

    Book  Google Scholar 

  7. X.L. Wang, J.C. Chow, S.D. Kohl, K.E. Percy, A.H. Legge, and J.G. Watson, Real-world emission factors for Caterpillar 797B heavy haulers during mining operations, Particuology, 28(2016), p. 22.

    Article  CAS  Google Scholar 

  8. M. Tuusjärvi, I. Mäenpää, S. Vuori, P. Eilu, S. Kihlman, and S. Koskela, Metal mining industry in Finland — Development scenarios to 2030, J. Cleaner Prodi., 84(2014), p. 271.

    Article  Google Scholar 

  9. National Bureau of Statistics of China [2020-07-15]. http://data.stats.gov.cn/easyquery.htm?cn=C01

  10. G.M. Mudd, The environmental sustainability of mining in Australia: Key mega-trends and looming constraints, Resour. Policy, 35(2010), No. 2, p. 98.

    Article  Google Scholar 

  11. M. Davarazar, D. Jahanianfard, Y. Sheikhnejad, B. Nemati, A. Mostafaie, S. Zandi, M. Khalaj, M. Kamali, and T.M. Aminabhavi, Underground carbon dioxide sequestration for climate change mitigation — A scientometric study, J. CO2 Util., 33(2019), p. 179.

    Article  CAS  Google Scholar 

  12. R. Irarrázabal, Mining and climate change: Towards a strategy for the industry, J. Energy Nat. Resour. Law, 24(2006), No. 3, p. 403.

    Article  Google Scholar 

  13. B. McDonald and Neil Hawke, Environmental Policy: Implementation and enforcement, Int. Environ. Agreements Polit. Law Econ., 3(2005), No. 3, p. 293.

    Article  Google Scholar 

  14. A.J. Bradbrook, R. Lyster, R.L. Ottinger, and X. Wang, The Law of Energy for Sustainable Development, Cambridge University Press, Cambridge, 2005.

    Book  Google Scholar 

  15. E.D.C. Rodovalho and G. de Tomi, Simulation of the impact of mine face geometry on the energy efficiency of short-distance haulage mining operations, Min. Technol., 125(2016), No. 4, p. 226.

    Article  Google Scholar 

  16. E. Worrell, L. Price, N. Martin, C. Hendriks, and L.O. Meida, Carbon dioxide emissions from the global cement industry, Ann. Rev. Energy Env., 26(2001), p. 303.

    Article  Google Scholar 

  17. M.I. Attalla, S.J. Day, T. Lange, W. Lilley, and S. Morgan, NOx emissions from blasting operations in open-cut coal mining, Atmos. Environ., 42(2008), No. 34, p. 7874.

    Article  CAS  Google Scholar 

  18. B. Pandey, M. Gautam, and M. Agrawal, Greenhouse gas emissions from coal mining activities and their possible mitigation strategies, [in] S.S. Muthu, ed., Environmental Carbon Footprints: Industrial Case Studies, Elsevier, Oxford, 2018, p. 259.

    Chapter  Google Scholar 

  19. J.D.N. Pone, K.A.A. Hein, G.B. Stracher, H.J. Annegarn, R.B. Finkleman, D.R. Blake, J.K. McCormack, and P. Schroeder, The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa, Int. J. Coal Geol., 72(2007), No. 2, p. 124.

    Article  CAS  Google Scholar 

  20. R.B. Finkelman, Potential health impacts of burning coal beds and waste banks, Int. J. Coal Geol., 59(2004), No. 1–2, p. 19.

    Article  CAS  Google Scholar 

  21. D.A. Kirchgessner, S.D. Piccot, and S.S. Masemore, An improved inventory of methane emissions from coal mining in the United States, J. Air Waste Manage. Assoc., 50(2000), No. 11, p. 1904.

    Article  CAS  Google Scholar 

  22. Y.W. Ju, Y. Sun, Z.Y. Sa, J.N. Pan, J.L. Wang, Q.L. Hou, Q.G. Li, Z.F. Yan, and J. Liu, A new approach to estimate fugitive methane emissions from coal mining in China, Sci. Total Environ., 543(2016), p. 514.

    Article  CAS  Google Scholar 

  23. United States Environmental Protection Agency, Global Anthropogenic Non-CO2Greenhouse Gas Emissions: 1990–2030 [2012-12-31]. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=OAP&dirEntrId=268252

  24. P. Franklin, Methane from Coal Mines Presents Opportunity to Recover Energy and Generate Revenues, Oilfield Technology [2009-09-30]. https://www.offieldeechnology.com/exploration/30092009/methane_from_coal_mines_presents_opportunity_to_recover_energy_and_generate_revenues/#tags

  25. S. Su, J.Y. Han, J.Y. Wu, H.J. Li, R. Worrall, H. Guo, X. Sun, and W.G. Liu, Fugitive coal mine methane emissions at five mining areas in China, Atmos. Environ., 45(2011), No. 13, p. 2220.

    Article  CAS  Google Scholar 

  26. A. Soofastaei, S.M. Aminossadati, M.S. Kizil, and P. Knights, Simulation of payload variance effects on truck bunching to minimise energy consumption and greenhouse gas emissions, [in] The 15th Coal Operators;’ Conference, University of Wollongong, Wollongong, 2015, p. 337.

    Google Scholar 

  27. T. Norgate and N. Haque, Energy and greenhouse gas impacts of mining and mineral processing operations, J. Cleaner Prod., 18(2010), No. 3, p. 266.

    Article  CAS  Google Scholar 

  28. D. Paraskevas, K. Kellens, A.V.D. Voorde, W. Dewulf, and J.R. Duflou, Environmental impact analysis of primary aluminium production at country level, Procedia CIRP, 40(2016), p. 209.

    Article  Google Scholar 

  29. M.G. da Silva, A.R.C. Muniz, R. Hoffmann, and A.C.L. Lisbôa, Impact of greenhouse gases on surface coal mining in Brazil, J. Cleaner Prod., 193(2018), p. 206.

    Article  Google Scholar 

  30. S.D. Odell, A. Bebbington, and K.E. Frey, Mining and climate change: A review and framework for analysis, Extr. Ind. Soc., 5(2018), No. 1, p. 201.

    Google Scholar 

  31. L. Li, Y.L. Lei, and D.Y. Pan, Study of CO2 emissions in China;’s iron and steel industry based on economic input-output life cycle assessment, Nat. Hazard., 81(2016), No. 2, p. 957.

    Article  Google Scholar 

  32. J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J.T. Turnure, and L. Westfall, International Energy Outlook 2016: With Projections to 2040, Technical Report, U.S. Energy Information Administration, Washington, 2016.

    Book  Google Scholar 

  33. United States Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks [0200-33110]. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

  34. P. van Dijk, C. Kuenzer, J.Z. Zhang, K.H. Wolf, and J. Wang, Scientific Assessment and Policy Analysis: Fossil Fuel Deposit Fires: Occurrence Inventory, Design and Assessment of Instrumental Options, Netherlands Research Programme on Scientific Assessment and Policy Analsis for Climate Change (WAB), the Netherlands, 2009.

    Google Scholar 

  35. J.F. Zhang and K.R. Smith, Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions, Environ. Health Perspect., 115(2007), No. 6, p. 848.

    Article  Google Scholar 

  36. A. Restrepo, E. Bazzo, and R. Miyake, A life cycle assessment of the Brazilian coal used for electric power generation, J. Cleaner Prod., 92(2015), p. 179.

    Article  Google Scholar 

  37. Y. Gan and W.M. Griffin, Analysis of life-cycle GHG emissions for iron ore mining and processing in China—Uncertainty and trends, Resour. Policy, 58(2018), p. 90.

    Article  Google Scholar 

  38. L.Y. Liu, H.G. Ji, D. Elsworth, S. Zhi, X.F. Lv, and T. Wang, Dual-damage constitutive model to define thermal damage in rock, Int. J. Rock Mech. Min. Sci., 126(2020), art. No. 104185.

  39. K. Parameswaran, Sustainability considerations in innovative process development, [in] V.L. Lakshmanan, R. Roy, and V. Ramachandran, eds., Innovative Process Development in Metallurgical Industry, Springer, Cham, 2016, p. 257.

    Chapter  Google Scholar 

  40. Z.Y. Ma and P.G. Ranjith, Review of application of molecular dynamics simulations in geological sequestration of carbon dioxide, Fuel, 255(2019), art. No. 115644.

  41. L. Liu, Damage Mechanics Model for Dual Porosity Medium and Its Application on Hydraulic Fracturing [Dissertation], Northeastern University, Shenyang, 2018.

    Google Scholar 

  42. L.M. Qiu, D.Z. Song, X.Q. He, E.Y. Wang, Z.L. Li, S. Yin, M.H. Wei, and Y. Liu, Multifractal of electromagnetic waveform and spectrum about coal rock samples subjected to uniaxial compression, Fractals, 28(2020), No. 4, art. No. 2050061.

  43. L.Y. Liu, W.C. Zhu, C.H. Wei, and X.H. Ma, Mechanical model and numerical analysis of mechanical property alterations of coal induced by gas adsorption, Rock Soil Mech., 39(2018), No. 4, p. 1500.

    Google Scholar 

  44. S. Zhi, D. Elsworth, and L.Y. Liu, W-shaped permeability evolution of coal with supercritical CO2 phase transition, Int. J. Coal Geol., 211(2019), art. No. 103221.

  45. L.Y. Liu, W.C. Ma, and W.D. Wang, Dual damage mechanism of supercritical CO2 adsorption-induced weakening effect on coal, J. Shandong Univ. Sci. Technol. (Nat. Sci.), 39(2020), No. 4, p. 79.

    Google Scholar 

  46. C.S. Zheng, Z.W. Chen, M. Kizil, S. Aminossadati, Q.L. Zou, and P.P. Gao, Characterisation of mechanics and flow fields around in-seam methane gas drainage borehole for preventing ventilation air leakage: A case study, Int. J. Coal Geol., 162(2016), p. 123.

    Article  CAS  Google Scholar 

  47. S.J. Schatzel, C.Ö. Karacan, H. Dougherty, and G.V.R. Goodman, An analysis of reservoir conditions and responses in longwall panel overburden during mining and its effect on gob gas well performance, Eng. Geol., 127(2012), p. 65.

    Article  Google Scholar 

  48. C.Ö. Karacan, F.A. Ruiz, M. Cotè, and S. Phipps, Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction, Int. J. Coal Geol., 86(2011), No. 2–3, p. 121.

    Article  CAS  Google Scholar 

  49. C.S. Zheng, B.Y. Jiang, S. Xue, Z.W. Chen, and H. Li, Coal-bed methane emissions and drainage methods in underground mining for mining safety and environmental benefits: A review, Process Saf. Environ. Prot., 127(2019), p. 103.

    Article  CAS  Google Scholar 

  50. United States Environmental Protection Agency, Identifying Opportunities for Methane Recovery at U.S. Coal Mines: Profiles of Selected Gassy Underground Coal Mines 2002–2006 [2009-01-30]. https://www.epa.gov/sites/production/files/2016-03/documents/profiles_2008_final.pdf

  51. L.Y. Liu, W.C. Zhu, C.H. Wei, D. Elsworth, and J.H. Wang, Microcrack-based geomechanical modeling of rock-gas interaction during supercritical CO2 fracturing, J. Pet. Sci. Eng., 164(2018), p. 91.

    Article  CAS  Google Scholar 

  52. B.L. Preston and R.N. Jones, Climate Change Impacts on Australia and the Benefits of Early Action to Reduce Global Greenhouse Gas Emissions, Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria, 2006.

    Google Scholar 

  53. C.M. White, D.H. Smith, K.L. Jones, A.L. Goodman, S.A. Jikich, R.B. LaCount, S.B. DuBose, E. Özdemir, B.I. Morsi, and K.T. Schroeder, Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery — A review, Energy Fuels, 19(2005), No. 3, p. 659.

    Article  CAS  Google Scholar 

  54. S. Harpalani, B.K. Prusty, and P. Dutta, Methane/CO2 sorption modeling for coalbed methane production and CO2 sequestration, Energy Fuels, 20(2006), No. 4, p. 1591.

    Article  CAS  Google Scholar 

  55. M.J. Mavor, W.D. Gunter, J.R. Robinson, D.H.-S. Law, and J. Gale, Testing for CO2 sequestration and enhanced methane production from coal, [in] SPE Gas Technology Symposium, Calgary, 2002.

  56. W.C. Zhu, L.Y. Liu, J.S. Liu, C.H. Wei, and Y. Peng, Impact of gas adsorption-induced coal damage on the evolution of coal permeability, Int. J. Rock Mech. Min. Sci., 101(2018), p. 89.

    Article  Google Scholar 

  57. J.Y. You, W. Ampomah, Q. Sun, E.J. Kutsienyo, R.S. Balch, Z.X. Dai, M. Cather, and X.Y. Zhang, Machine learning based co-optimization of carbon dioxide sequestration and oil recovery in CO2-EOR project, J. Cleaner Prod., 260(2020), art. No. 120866.

  58. J.J. Dooley, R.T. Dahowski, C.L. Davidson, M.A. Wise, N. Gupta, S.H. Kim, and E.L. Malone, Carbon Dioxide Capture and Geologic Storage: A Core Element of a Global Energy Technology Strategy to Address Climate Change, Global Energy Technology Strategy Program, College Park, MD, 2006.

    Google Scholar 

  59. S. Bachu, Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change, Energy Convers. Manage., 41(2000), No. 9, p. 953.

    Article  CAS  Google Scholar 

  60. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, J.C. Minx, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, and T. Zwickel, Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2014.

    Google Scholar 

  61. M.C. Carbo, R. Smit, B. van der Drift, and D. Jansen, Bio energy with CCS (BECCS): Large potential for BioSNG at low CO2 avoidance cost, Energy Procedia, 4(2011), p. 2950.

    Article  Google Scholar 

  62. M. Yellishetty, P.G. Ranjith, A. Tharumarajah, and S. Bhosale, Life cycle assessment in the minerals and metals sector: A critical review of selected issues and challenges, Int. J. Life Cycle Assess., 14(2009), No. 3, art. No. 257.

  63. N. Suppen, M. Carranza, M. Huerta, and M.A. Hernandez, Environmental management and life cycle approaches in the Mexican mining industry, J. Cleaner Prod., 14(2006), No. 12–13, p. 1101.

    Article  Google Scholar 

  64. T. Adachi and G. Mogi, Life cycle inventory for base metal ingots production in Japan including mining and mineral processing processes by cost estimating system database, Trans. Nonferrous Met. Soc. China, 17(2007), Suppl. 1, p. 131.

    Google Scholar 

  65. S.J. Mangena and A.C. Brent, Application of a life cycle impact assessment framework to evaluate and compare environmental performances with economic values of supplied coal products, J. Cleaner Prod., 14(2006), No. 12–13, p. 1071.

    Article  Google Scholar 

  66. X.Y. Liang, Z.H. Wang, Z.J. Zhou, Z.Y. Huang, J.H. Zhou, and K.F. Cen, Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China, J. Cleaner Prod., 39(2013), p. 24.

    Article  CAS  Google Scholar 

  67. K. Awuah-Offei, D. Checkel, and H. Askari-Nasab, Valuation of belt conveyor and truck haulage systems in an open pit mine using life cycle assessment, CIM Bull., 102(2009), p. 1.

    Google Scholar 

  68. R. Sada, Carbon Trading [Dissertation], HNB Garhwal University, Uttarakhand, 2007.

    Google Scholar 

  69. F.T. Wang, T. Ren, S.H. Tu, F. Hungerford, and N. Aziz, Implementation of underground longhole directional drilling technology for greenhouse gas mitigation in Chinese coal mines, Int. J. Greenhouse Gas Control, 11(2012), p. 290.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Bei**g Natural Science Foundation (No. 2204084), the National Science Foundation of China (Nos. 52004015 and 51874014), the Major Scientific and Technological Innovation Project of Shandong Province, China (No. 2019SDZY02), and the Fundamental Research Funds for the Central Universities of China (No. FRF-TP-19-027A1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-guang Ji or **ang-feng Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Ly., Ji, Hg., Lü, Xf. et al. Mitigation of greenhouse gases released from mining activities: A review. Int J Miner Metall Mater 28, 513–521 (2021). https://doi.org/10.1007/s12613-020-2155-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2155-4

Keywords

Navigation