Log in

Data science methodologies in smart healthcare: a review

  • Review Paper
  • Published:
Health and Technology Aims and scope Submit manuscript

Abstract

Data Science methodologies empower the representation and quantitative investigation in the field of smart healthcare. It is of extraordinary noteworthiness for early detection/classification of diseases for treatment planning. Nonetheless, there is a strong need to provide an in-depth survey of the existing methodologies highlighting their pros and cons to make them attractive for the researchers. The present study is an effort in this direction. The contribution made in this paper provides a new research path to the data science methodologies in smart healthcare, as opposed to the existing review articles. Recently, medical imaging investigation used deep learning (DL), as it defeats the limitations of the visual evaluation and the conventional machine learning methods for smart healthcare services. Research and methodologies are yet to be explored for the development of e-health. In this review paper, the uses of data science techniques in the clinical practice are highlighted. Also, it focuses on the state-of-the-art methods in the DL-based detection/classification of diseases. We emphasize the trends and challenges in smart healthcare as well as compare some baseline methods. This paper may be beneficial for the researchers to explore many more ideas covering all aspects of data science methodologies and applications for smart healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Al-Dulaimi J, Cosmas J. Smart safety & health care in cities. Procedia Comput Sci. 2016;98:259–66.

    Article  Google Scholar 

  2. Mallow JA, Theeke LA, Theeke E, Mallow BK. The effectiveness of mI SMART: A nurse practitioner led technology intervention for multiple chronic conditions in primary care. Int J Nurs Sci. 2018;5(2):131–7.

    Google Scholar 

  3. Sicari S, Rizzardi A, Grieco L, Piro G, Coen-Porisini A. A policy enforcement framework for internet of things applications in the smart health. Smart Health. 2017;3:39–74.

    Article  Google Scholar 

  4. Lytras MD, Chui KT, Visvizi A. Data analytics in smart healthcare: The recent developments and beyond. 2019.

  5. Syed L, Jabeen S, Manimala S, Elsayed HA. Data science algorithms and techniques for smart healthcare using IoT and big data analytics. In: Smart Techniques for a Smarter Planet. Springer; 2019. p. 211–241.

  6. Tian S, Yang W, Le Grange JM, Wang P, Huang W, Ye Z. Smart healthcare: making medical care more intelligent. Global Health Journal. 2019.

  7. Chui KT, Alhalabi W, Pang SSH, Pablos POD, Liu RW, Zhao M. Disease diagnosis in smart healthcare: Innovation, technologies and applications. Sustainability. 2017;9(12):2309.

    Article  Google Scholar 

  8. Rayan Z, Alfonse M, Salem ABM. Machine learning approaches in smart health. Procedia Comput Sci. 2019;154:361–8.

    Article  Google Scholar 

  9. Sundaravadivel P, Kougianos E, Mohanty SP, Ganapathiraju MK. Everything you wanted to know about smart health care: Evaluating the different technologies and components of the internet of things for better health. IEEE Consum Electron Mag. 2017;7(1):18–28.

    Article  Google Scholar 

  10. Afrati FN, Ullman JD. Optimizing joins in a map-reduce environment. In: Proceedings of the 13th International Conference on Extending Database Technology. 2010. p. 99–110.

  11. Chen LM. Overview of basic methods for data science. In: Mathematical problems in data science. Springer; 2015. p. 17–37.

  12. Aborokbah MM, Al-Mutairi S, Sangaiah AK, Samuel OW. Adaptive context aware decision computing paradigm for intensive health care delivery in smart cities-a case analysis. Sustain Cities Soc. 2018;41:919–24.

    Article  Google Scholar 

  13. Medhane DV, Sangaiah AK. Search space-based multi-objective optimization evolutionary algorithm. Comput Electr Eng. 2017;58:126–43.

    Article  Google Scholar 

  14. Sangaiah AK, Thangavelu AK. An adaptive neuro-fuzzy approach to evaluation of team-level service climate in GSD projects. Neural Comput Applic. 2014;25(3–4):573–83.

    Article  Google Scholar 

  15. Sangaiah AK, Thangavelu AK, Gao XZ, Anbazhagan N, Durai MS. An ANFIS approach for evaluation of team-level service climate in GSD projects using Taguchi-genetic learning algorithm. Appl Soft Comput. 2015;30:628–35.

    Article  Google Scholar 

  16. Sampri A, Mavragani A, Tsagarakis KP. Evaluating google trends as a tool for integrating the “smart health” concept in the smart cities’ governance in USA. Procedia Eng. 2016;162:585–92.

    Article  Google Scholar 

  17. Manikandan R, Patan R, Gandomi AH, Sivanesan P, Kalyanaraman H. Hash polynomial two factor decision tree using IoT for smart health care scheduling. Expert Syst Appl. 2020;141:112924.

  18. Tokognon CA, Gao B, Tian GY, Yan Y. Structural health monitoring framework based on internet of things: a survey. IEEE Internet Things J. 2017;4(3):619–35.

    Article  Google Scholar 

  19. Pal D, Funilkul S, Charoenkitkarn N, Kanthamanon P. Internet-of-things and smart homes for elderly healthcare: an end user perspective. IEEE Access. 2018;6:10483–96.

    Article  Google Scholar 

  20. Enshaeifar S, Zoha A, Markides A, Skillman S, Acton ST, Elsaleh T, Hassanpour M, Ahrabian A, Kenny M, Klein S, et al. Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques. PloS One. 2018;13(5).

  21. Rodrigues JJ, Segundo DBDR, Junqueira HA, Sabino MH, Prince RM, Al-Muhtadi J, De Albuquerque VHC. Enabling technologies for the internet of health things. IEEE Access. 2018;6:13129–41.

    Article  Google Scholar 

  22. Übeyli ED. Implementing automated diagnostic systems for breast cancer detection. Expert Syst Appl. 2007;33(4):1054–62.

    Article  Google Scholar 

  23. Polat K, Güneş S. Breast cancer diagnosis using least square support vector machine. Digit Signal Process. 2007;17(4):694–701.

    Article  Google Scholar 

  24. Setiono R. Generating concise and accurate classification rules for breast cancer diagnosis. Artif Intell Med. 2000;18(3):205–19.

    Article  Google Scholar 

  25. Sheikhpour R, Sarram MA, Sheikhpour R. Particle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancer. Appl Soft Comput. 2016;40:113–31.

    Article  MATH  Google Scholar 

  26. Dheeba J, Singh NA, Selvi ST. Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J Biomed Inform. 2014;49:45–52.

    Article  Google Scholar 

  27. Mert A, Kılıç N, Bilgili E, Akan A. Breast cancer detection with reduced feature set. Comput Math Methods Med. 2015;2015.

  28. Nahato KB, Harichandran KN, Arputharaj K. Knowledge mining from clinical datasets using rough sets and backpropagation neural network. Comput Math Methods Med. 2015;2015.

  29. Badnjevic A, Gurbeta L, Custovic E. An expert diagnostic system to automatically identify asthma and chronic obstructive pulmonary disease in clinical settings. Sci Rep. 2018;8(1):1–9.

    Article  Google Scholar 

  30. Badnjević A, Pokvić LG, Hasičić M, Bandić L, Mašetić Z, Kovačević Ž, Kevrić J, Pecchia L. Evidence-based clinical engineering: machine learning algorithms for prediction of defibrillator performance. Biomed Signal Process Control. 2019;54:101629.

  31. Catic A, Gurbeta L, Kurtovic-Kozaric A, Mehmedbasic S, Badnjevic A. Application of neural networks for classification of Patau, Edwards, Down, Turner and Klinefelter syndrome based on first trimester maternal serum screening data, ultrasonographic findings and patient demographics. BMC Med Genet. 2018;11(1):1–12.

    Google Scholar 

  32. Kovačević Ž, Pokvić LG, Spahić L, Badnjević A. Prediction of medical device performance using machine learning techniques: infant incubator case study. Heal Technol. 2020;10(1):151–5.

    Article  Google Scholar 

  33. Stokes K, Castaldo R, Franzese M, Salvatore M, Fico G, Pokvic LG, Badnjevic A, Pecchia L. A machine learning model for supporting symptom-based referral and diagnosis of bronchitis and pneumonia in limited resource settings. Biocybern Biomed Eng. 2021;41(4):1288–302.

    Article  Google Scholar 

  34. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    Article  Google Scholar 

  35. Winkels M, Cohen TS. Pulmonary nodule detection in CT scans with equivariant CNNS. Med Image Anal. 2019;55:15–26.

    Article  Google Scholar 

  36. Simard PY, Steinkraus D, Platt JC, et al. Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, vol 3. 2003.

  37. Kumar A, Singh SK, Saxena S, Lakshmanan K, Sangaiah AK, Chauhan H, Shrivastava S, Singh RK. Deep feature learning for histopathological image classification of canine mammary tumors and human breast cancer. Inf Sci. 2020;508:405–21.

    Article  Google Scholar 

  38. Khan S, Islam N, Jan Z, Din IU, Rodrigues JJC. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recogn Lett. 2019;125:1–6.

    Article  Google Scholar 

  39. Wang P, Song Q, Li Y, Lv S, Wang J, Li L, Zhang H. Cross-task extreme learning machine for breast cancer image classification with deep convolutional features. Biomed Signal Process Control. 2020a;57:101789.

  40. Beevi KS, Nair MS, Bindu G. Automatic mitosis detection in breast histopathology images using convolutional neural network based deep transfer learning. Bioprocess Biosyst Eng. 2019;39(1):214–23.

    Google Scholar 

  41. Li H, Zhuang S, Da Li, Zhao J, Ma Y. Benign and malignant classification of mammogram images based on deep learning. Biomed Signal Process Control. 2019;51:347–54.

    Article  Google Scholar 

  42. Abdel-Zaher AM, Eldeib AM. Breast cancer classification using deep belief networks. Expert Systems with Applications. 2016;46:139–44.

    Article  Google Scholar 

  43. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.

    Article  Google Scholar 

  44. Valverde S, Cabezas M, Roura E, González-Villà S, Pareto D, Vilanova JC, Ramió-Torrentà L, Rovira À, Oliver A, Lladó X. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage. 2017;155:159–68.

    Article  Google Scholar 

  45. Wachinger C, Reuter M, Klein T. Deepnat: Deep convolutional neural network for segmenting neuroanatomy. NeuroImage. 2018;170:434–45.

    Article  Google Scholar 

  46. Trebeschi S, van Griethuysen JJ, Lambregts DM, Lahaye MJ, Parmar C, Bakers FC, Peters NH, Beets-Tan RG, Aerts HJ. Author correction: deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR. Sci Rep. 2018;8(1):1.

    Article  Google Scholar 

  47. Christ PF, Ettlinger F, Grün F, Elshaera MEA, Lipkova J, Schlecht S, Ahmaddy F, Tatavarty S, Bickel M, Bilic P, et al. Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. ar**v preprint ar**v:170205970. 2017.

  48. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer; 2015. p. 234–241.

  49. Chen L, Wu Y, DSouza AM, Abidin AZ, Wismüller A, Xu C. MRI tumor segmentation with densely connected 3D CNN. In: Medical imaging 2018: image processing, international society for optics and photonics, vol. 10574. 2018. p. 105741F.

  50. Jégou S, Drozdzal M, Vazquez D, Romero A, Bengio Y. The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017. p. 11–19.

  51. Li Z, Wang Y, Yu J, Guo Y, Cao W. Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep. 2017;7(1):1–11.

    Google Scholar 

  52. Clark T, Wong A, Haider MA, Khalvati F. Fully deep convolutional neural networks for segmentation of the prostate gland in diffusion-weighted MR images. In: International Conference Image Analysis and Recognition. Springer; 2017. p. 97–104.

  53. McKinley R, Wepfer R, Gundersen T, Wagner F, Chan A, Wiest R, Reyes M. Nabla-net: A deep dag-like convolutional architecture for biomedical image segmentation. In: International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer; 2016. p. 119–128.

  54. Zhang Q, Cui Z, Niu X, Geng S, Qiao Y. Image segmentation with pyramid dilated convolution based on ResNet and U-Net. In: International Conference on Neural Information Processing. Springer; 2017. p. 364–372.

  55. Deniz CM, **ang S, Hallyburton RS, Welbeck A, Babb JS, Honig S, Cho K, Chang G. Segmentation of the proximal femur from MR images using deep convolutional neural networks. Sci Rep. 2018;8(1):1–14.

    Article  Google Scholar 

  56. Milletari F, Ahmadi SA, Kroll C, Plate A, Rozanski V, Maiostre J, Levin J, Dietrich O, Ertl-Wagner B, Bötzel K, et al. Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput Vis Image Underst. 2017;164:92–102.

    Article  Google Scholar 

  57. Yang X, Yu L, Wu L, Wang Y, Ni D, Qin J, Heng PA. Fine-grained recurrent neural networks for automatic prostate segmentation in ultrasound images. In: Thirty-First AAAI Conference on Artificial Intelligence. 2017b.

  58. Poudel RP, Lamata P, Montana G. Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. In: Reconstruction, segmentation, and analysis of medical images. Springer; 2016. p. 83–94.

  59. Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging. 2019;49(4):939–54.

    Article  Google Scholar 

  60. Antropova N, Huynh BQ, Giger ML. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys. 2017;44(10):5162–71.

    Article  Google Scholar 

  61. Paul R, Hawkins SH, Balagurunathan Y, Schabath MB, Gillies RJ, Hall LO, Goldgof DB. Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography. 2016;2(4):388.

    Article  Google Scholar 

  62. Chi J, Walia E, Babyn P, Wang J, Groot G, Eramian M. Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network. J Digit Imaging. 2017;30(4):477–86.

    Article  Google Scholar 

  63. Kumar A, Kim J, Lyndon D, Fulham M, Feng D. An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J Biomed Health Inform. 2016;21(1):31–40.

    Article  Google Scholar 

  64. Zhu Z, Harowicz M, Zhang J, Saha A, Grimm LJ, Hwang ES, Mazurowski MA. Deep learning analysis of breast MRIS for prediction of occult invasive disease in ductal carcinoma in situ. Comput Biol Med. 2019;115:103498.

  65. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. 2012. p. 1097–1105.

  66. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. ar**v preprint ar**v:14091556. 2014.

  67. Suk HI, Lee SW, Shen D, Initiative ADN, et al. Deep ensemble learning of sparse regression models for brain disease diagnosis. Med Image Anal. 2017;37:101–13.

    Article  Google Scholar 

  68. Khawaldeh S, Pervaiz U, Rafiq A, Alkhawaldeh RS. Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks. Appl Sci. 2018;8(1):27.

    Article  Google Scholar 

  69. González G, Ash SY, Vegas-Sánchez-Ferrero G, Onieva Onieva J, Rahaghi FN, Ross JC, Díaz A, San José Estépar R, Washko GR. Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med. 2018;197(2):193–203.

    Article  Google Scholar 

  70. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 770–778.

  71. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. p. 2818–2826.

  72. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence. 2017.

  73. Kim Y. Convolutional neural networks for sentence classification. ar**v preprint ar**v:14085882. 2014.

  74. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. ar**v preprint ar**v:171105225. 2017.

  75. Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. In: Advances in neural information processing systems. 2007. p. 153–160.

  76. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–7.

    Article  MathSciNet  MATH  Google Scholar 

  77. Ortiz A, Munilla J, Martínez-Murcia FJ, Górriz JM, Ramírez J, Initiative ADN, et al. Learning longitudinal MRI patterns by SICE and deep learning: Assessing the Alzheimer’s disease progression. In: Annual Conference on Medical Image Understanding and Analysis. Springer; 2017. p. 413–424.

  78. Kumar D, Wong A, Clausi DA. Lung nodule classification using deep features in CT images. In: 2015 12th Conference on Computer and Robot Vision. IEEE; 2015. p. 133–138.

  79. Yoo Y, Tang LY, Brosch T, Li DK, Kolind S, Vavasour I, Rauscher A, MacKay AL, Traboulsee A, Tam RC. Deep learning of joint myelin and t1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. NeuroImage: Clinical. 2018;17:169–178.

  80. Bi X, Li S, **ao B, Li Y, Wang G, Ma X. Computer aided Alzheimer’s disease diagnosis by an unsupervised deep learning technology. Neurocomputing. 2019.

  81. Ismael SAA, Mohammed A, Hefny H (2020) An enhanced deep learning approach for brain cancer MRI images classification using residual networks. Artif Intell Med. 102:101779.

  82. Wang Z, Li M, Wang H, Jiang H, Yao Y, Zhang H, **n J. Breast cancer detection using extreme learning machine based on feature fusion with CNN deep features. IEEE Access. 2019;7:105146–58.

    Article  Google Scholar 

  83. Zhang D, Zou L, Zhou X, He F. Integrating feature selection and feature extraction methods with deep learning to predict clinical outcome of breast cancer. IEEE Access. 2018;6:28936–44.

    Article  Google Scholar 

  84. Kwak JT, Hewitt SM. Nuclear architecture analysis of prostate cancer via convolutional neural networks. IEEE Access. 2017;5:18526–33.

    Article  Google Scholar 

  85. Rakhlin A, Shvets A, Iglovikov V, Kalinin AA. Deep convolutional neural networks for breast cancer histology image analysis. In: International Conference Image Analysis and Recognition. Springer; 2018. p. 737–744.

  86. Kaur P, Singh G, Kaur P. Intellectual detection and validation of automated mammogram breast cancer images by multi-class SVM using deep learning classification. Inform Med Unlocked. 2019;16:100151.

  87. Wang Y, Choi EJ, Choi Y, Zhang H, ** GY, Ko SB. Breast cancer classification in automated breast ultrasound using multiview convolutional neural network with transfer learning. Ultrasound Med Biol. 2020b;46(5):1119–1132

  88. Shen L, He M, Shen N, Yousefi N, Wang C, Liu G. Optimal breast tumor diagnosis using discrete wavelet transform and deep belief network based on improved sunflower optimization method. Biomed Signal Process Control. 2020;60:101953.

  89. Özyurt F, Sert E, Avcı D. An expert system for brain tumor detection: Fuzzy c-means with super resolution and convolutional neural network with extreme learning machine. Med Hypotheses. 2020;134:109433.

  90. Sharif MI, Li JP, Khan MA, Saleem MA. Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images. Pattern Recogn Lett. 2020;129:181–9.

    Article  Google Scholar 

  91. Ghassemi N, Shoeibi A, Rouhani M. Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomed Signal Process Control. 2020;57:101678.

  92. Raja PS, et al. Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach. Biocybernetics and Biomedical Engineering. 2020;40(1):440–53.

    Article  Google Scholar 

  93. Kumar S, Mankame DP. Optimization driven deep convolution neural network for brain tumor classification. Biocybern Biomed Eng. 2020;40(3):1190–204.

    Article  Google Scholar 

  94. Hashemzehi R, Mahdavi SJS, Kheirabadi M, Kamel SR. Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE. Biocybern Biomed Eng. 2020;40(3):1225–32.

    Article  Google Scholar 

  95. Maharjan S, Alsadoon A, Prasad P, Al-Dalain T, Alsadoon OH. A novel enhanced softmax loss function for brain tumour detection using deep learning. J Neurosci Methods. 2020;330:108520.

  96. Çinar A, Yildirim M. Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture. Med Hypotheses. 2020;139:109684.

  97. Hussain S, Anwar SM, Majid M. Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing. 2018;282:248–61.

    Article  Google Scholar 

  98. Yang X, Liu C, Wang Z, Yang J, Le Min H, Wang L, Cheng KTT. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI. Med Image Anal. 2017a;42:212–227

  99. Salvi M, Molinari F, Acharya UR, Molinaro L, Meiburger KM. Impact of stain normalization and patch selection on the performance of convolutional neural networks in histological breast and prostate cancer classification. Computer Methods and Programs in Biomedicine Update. 2021;1:100004.

  100. Duran-Lopez L, Dominguez-Morales JP, Conde-Martin AF, Vicente-Diaz S, Linares-Barranco A. Prometeo: A CNN-based computer-aided diagnosis system for WSI prostate cancer detection. IEEE Access. 2020;8:128613–28.

    Article  Google Scholar 

  101. Karimi D, Nir G, Fazli L, Black PC, Goldenberg L, Salcudean SE. Deep learning-based gleason grading of prostate cancer from histopathology images-role of multiscale decision aggregation and data augmentation. IEEE J Biomed Health Inform. 2019;24(5):1413–26.

    Article  Google Scholar 

  102. Chen J, Wan Z, Zhang J, Li W, Chen Y, Li Y, Duan Y. Medical image segmentation and reconstruction of prostate tumor based on 3D AlexNet. Comput Methods Prog Biomed. 2021;200:105878.

  103. Dhengre N, Sinha S, Chinni B, Dogra V, Rao N. Computer aided detection of prostate cancer using multiwavelength photoacoustic data with convolutional neural network. Biomed Signal Process Control. 2020;60:101952.

  104. Deepak S, Ameer P. Brain tumor classification using deep CNN features via transfer learning. Comput Biol Med. 2019;111:103345.

Download references

Funding

The authors did not receive support from any organization for the submitted work. No funding was received to assist with the preparation of this manuscript. No funding was received for conducting this study. No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutuparna Panda.

Ethics declarations

Informed consent

NA.

Research involving human and animal participants

NA.

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, P.K., Dora, L., Swain, M. et al. Data science methodologies in smart healthcare: a review. Health Technol. 12, 329–344 (2022). https://doi.org/10.1007/s12553-022-00648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12553-022-00648-9

Keywords

Navigation