Log in

Striped phases in the holographic insulator/superconductor transition

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study striped phases in holographic insulator/superconductor transition by considering a spatially modulated chemical potential in the AdS soliton background. Generally striped phases can develop above a critical chemical potential. When the constant leading term in the chemical potential is set to zero, a discontinuity is observed in the charge density as function of the chemical potential in the limit of large wave vector. We explain this discontinuity using an analytical approach. When the constant leading term in the chemical potential is present, the critical chemical potential is larger than in the case of a homogeneous chemical potential, which indicates that the spatially modulated chemical potential disfavors the phase transition. This behavior is again confirmed by an analytical approach. We also calculate the grand canonical potential and find that the striped phase is favored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  2. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [ar**v:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  5. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [ar**v:0810.1563] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav. 22 (2005) 5121 [hep-th/0505189] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [ar**v:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  8. T. Nishioka, S. Ryu and T. Takayanagi, Holographic superconductor/insulator transition at zero temperature, JHEP 03 (2010) 131 [ar**v:0911.0962] [INSPIRE].

    Article  ADS  Google Scholar 

  9. G.T. Horowitz and B. Way, Complete phase diagrams for a holographic superconductor/insulator system, JHEP 11 (2010) 011 [ar**v:1007.3714] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J.A. Hutasoit, S. Ganguli, G. Siopsis and J. Therrien, Strongly coupled striped superconductor with large modulation, JHEP 02 (2012) 086 [ar**v:1110.4632] [INSPIRE].

    Article  ADS  Google Scholar 

  11. Q. Li, M. Hücker, G.D. Gu, A.M. Tsvelik and J.M. Tranquada, Two-dimensional superconducting fluctuations in stripe-ordered La 1.875 Ba 0.125 CuO 4, Phys. Rev. Lett. 99 (2007) 067001 [cond-mat/0703357].

    Article  ADS  Google Scholar 

  12. E. Berg, E. Fradkin, S.A. Kivelson and J. Tranquada, Striped superconductors: how spin, charge and superconducting orders intertwine in the cuprates, New J. Phys. 11 (2009) 115004 [ar**v:0901.4826] [INSPIRE].

    Article  ADS  Google Scholar 

  13. V.J. Emery, S.A. Kivelson and J.M. Tranquada, Stripe phases in high-temperature superconductors, Proc. Natl. Acad. Sci. 96 (1999) 8814.

    Article  ADS  Google Scholar 

  14. K. Tamada, Do** dependence of the spatially modulated dynamical spin correlations and the superconducting-transition temperature in La 2−x Sr x CuO 4, Phys. Rev. B 57 (1998) 6165.

    ADS  Google Scholar 

  15. G. Gruner, The dynamics of charge-density waves, Rev. Mod. Phys. 60 (1988) 1129 [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [ar**v:1106.2004] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP 01 (2012) 061 [ar**v:1109.0471] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP 12 (2011) 091 [ar**v:1109.3866] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Donos and J.P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett. 108 (2012) 211601 [ar**v:1203.0533] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Donos and J.P. Gauntlett, Black holes dual to helical current phases, Phys. Rev. D 86 (2012) 064010 [ar**v:1204.1734] [INSPIRE].

    ADS  Google Scholar 

  21. M. Rozali, D. Smyth, E. Sorkin and J.B. Stang, Holographic stripes, Phys. Rev. Lett. 110 (2013) 201603 [ar**v:1211.5600] [INSPIRE].

    Article  ADS  Google Scholar 

  22. N. Iizuka and K. Maeda, Stripe instabilities of geometries with hyperscaling violation, Phys. Rev. D 87 (2013) 126006 [ar**v:1301.5677] [INSPIRE].

    ADS  Google Scholar 

  23. A. Donos and J.P. Gauntlett, Holographic charge density waves, ar**v:1303.4398 [INSPIRE].

  24. A. Donos, Striped phases from holography, JHEP 05 (2013) 059 [ar**v:1303.7211] [INSPIRE].

    Article  ADS  Google Scholar 

  25. B. Withers, Black branes dual to striped phases, Class. Quant. Grav. 30 (2013) 155025 [ar**v:1304.0129] [INSPIRE].

    Article  ADS  Google Scholar 

  26. B. Withers, The moduli space of striped black branes, ar**v:1304.2011 [INSPIRE].

  27. R. Flauger, E. Pajer and S. Papanikolaou, A striped holographic superconductor, Phys. Rev. D 83 (2011) 064009 [ar**v:1010.1775] [INSPIRE].

    ADS  Google Scholar 

  28. J.A. Hutasoit, S. Ganguli, G. Siopsis and J. Therrien, Strongly coupled striped superconductor with large modulation, JHEP 02 (2012) 086 [ar**v:1110.4632] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Ganguli, J.A. Hutasoit and G. Siopsis, Enhancement of critical temperature of a striped holographic superconductor, Phys. Rev. D 86 (2012) 125005 [ar**v:1205.3107] [INSPIRE].

    ADS  Google Scholar 

  30. J.A. Hutasoit, G. Siopsis and J. Therrien, Conductivity of strongly coupled striped superconductor, ar**v:1208.2964 [INSPIRE].

  31. G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP 07 (2012) 168 [ar**v:1204.0519] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. G.T. Horowitz, J.E. Santos and D. Tong, Further evidence for lattice-induced scaling, JHEP 11 (2012) 102 [ar**v:1209.1098] [INSPIRE].

    Article  ADS  Google Scholar 

  33. G.T. Horowitz and J.E. Santos, General relativity and the cuprates, ar**v:1302.6586 [INSPIRE].

  34. Y. Ling, C. Niu, J.-P. Wu, Z.-Y. **an and H.-B. Zhang, Holographic Fermionic liquid with lattices, JHEP 07 (2013) 045 [ar**v:1304.2128] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Aperis et al., Holographic charge density waves, Phys. Lett. B 702 (2011) 181 [ar**v:1009.6179] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S.K. Domokos and J.A. Harvey, Baryon number-induced Chern-Simons couplings of vector and axial-vector mesons in holographic QCD, Phys. Rev. Lett. 99 (2007) 141602 [ar**v:0704.1604] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev. D 81 (2010) 044018 [ar**v:0911.0679] [INSPIRE].

    ADS  Google Scholar 

  38. H. Ooguri and C.-S. Park, Holographic end-point of spatially modulated phase transition, Phys. Rev. D 82 (2010) 126001 [ar**v:1007.3737] [INSPIRE].

    ADS  Google Scholar 

  39. M. Ammon, J. Erdmenger, P. Kerner and M. Strydom, Black hole instability induced by a magnetic field, Phys. Lett. B 706 (2011) 94 [ar**v:1106.4551] [INSPIRE].

    Article  ADS  Google Scholar 

  40. Y.-Y. Bu, J. Erdmenger, J.P. Shock and M. Strydom, Magnetic field induced lattice ground states from holography, JHEP 03 (2013) 165 [ar**v:1210.6669] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Donos and S.A. Hartnoll, Metal-insulator transition in holography, ar**v:1212.2998 [INSPIRE].

  42. A. Donos, J.P. Gauntlett, J. Sonner and B. Withers, Competing orders in M-theory: superfluids, stripes and metamagnetism, JHEP 03 (2013) 108 [ar**v:1212.0871] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. N. Bao, S. Harrison, S. Kachru and S. Sachdev, Vortex lattices and crystalline geometries, Phys. Rev. D 88 (2013) 026002 [ar**v:1303.4390] [INSPIRE].

    ADS  Google Scholar 

  44. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  45. G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. G. Siopsis and J. Therrien, Analytic calculation of properties of holographic superconductors, JHEP 05 (2010) 013 [ar**v:1003.4275] [INSPIRE].

    Article  ADS  Google Scholar 

  47. R.-G. Cai, H.-F. Li and H.-Q. Zhang, Analytical studies on holographic insulator/superconductor phase transitions, Phys. Rev. D 83 (2011) 126007 [ar**v:1103.5568] [INSPIRE].

    ADS  Google Scholar 

  48. Q. Pan, J. **g and B. Wang, Analytical investigation of the phase transition between holographic insulator and superconductor in Gauss-Bonnet gravity, JHEP 11 (2011) 088 [ar**v:1105.6153] [INSPIRE].

    Article  ADS  Google Scholar 

  49. R.-G. Cai, L. Li, H.-Q. Zhang and Y.-L. Zhang, Magnetic field effect on the phase transition in AdS soliton spacetime, Phys. Rev. D 84 (2011) 126008 [ar**v:1109.5885] [INSPIRE].

    ADS  Google Scholar 

  50. Q. Pan, J. **g, B. Wang and S. Chen, Analytical study on holographic superconductors with backreactions, JHEP 06 (2012) 087 [ar**v:1205.3543] [INSPIRE].

    Article  ADS  Google Scholar 

  51. X.-H. Ge, B. Wang, S.-F. Wu and G.-H. Yang, Analytical study on holographic superconductors in external magnetic field, JHEP 08 (2010) 108 [ar**v:1002.4901] [INSPIRE].

    Article  ADS  Google Scholar 

  52. X.-H. Ge, Analytic methods in open string field theory, Prog. Theor. Phys. 128 (2012) 1211 [ar**v:1105.4333] [INSPIRE].

    Article  ADS  Google Scholar 

  53. C.O. Lee, The holographic superconductors in higher-dimensional AdS soliton, Eur. Phys. J. C 72 (2012) 2092 [ar**v:1202.5146] [INSPIRE].

    Article  ADS  Google Scholar 

  54. Z. Zhao, Q. Pan and J. **g, Holographic insulator/superconductor phase transition with Weyl corrections, Phys. Lett. B 719 (2013) 440 [ar**v:1212.3062] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. S. Gangopadhyay, Analytic study of properties of holographic superconductors away from the probe limit, Physics Letters B 724 (2013) 176 [ar**v:1302.1288] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. S. Gangopadhyay and D. Roychowdhury, Analytic study of Gauss-Bonnet holographic superconductors in Born-Infeld electrodynamics, JHEP 05 (2012) 156 [ar**v:1204.0673] [INSPIRE].

    Article  ADS  Google Scholar 

  57. Y. Peng, Q. Pan and B. Wang, Various types of phase transitions in the AdS soliton background, Phys. Lett. B 699 (2011) 383 [ar**v:1104.2478] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S.K. Domokos, C. Hoyos and J. Sonnenschein, Stability conditions for spatially modulated phases, ar**v:1307.3773 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Wei Pang.

Additional information

ArXiv ePrint: 1307.4609

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdmenger, J., Ge, XH. & Pang, DW. Striped phases in the holographic insulator/superconductor transition. J. High Energ. Phys. 2013, 27 (2013). https://doi.org/10.1007/JHEP11(2013)027

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)027

Keywords

Navigation