Log in

Cosmological constant, near brane behavior and singularities

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We show that the classical cosmological constant in type II flux compactifications can be written as a sum of terms from the action of localized sources plus a specific contribution from non-trivial background fluxes. Exploiting two global scaling symmetries of the classical supergravity action, we find that the flux contribution can in many interesting cases be set to zero such that the cosmological constant is fully determined by the boundary conditions of the fields in the near-source region. This generalizes and makes more explicit previous arguments in the literature. We then discuss the problem of putting \( \overline{\mathrm{D}3} \)-branes at the tip of the Klebanov-Strassler throat glued to a compact space in type IIB string theory so as to engineer a de Sitter solution. Our result for the cosmological constant and a simple global argument indicate that inserting a fully localized and backreacting \( \overline{\mathrm{D}3} \)-brane into such a background yields a singular energy density for the NSNS and RR 3-form field strengths at the \( \overline{\mathrm{D}3} \)-brane. This argument does not rely on partial smearing of the \( \overline{\mathrm{D}3} \)-brane or a linearization of field equations, but on a few general assumptions that we also discuss carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Douglas and R. Kallosh, Compactification on negatively curved manifolds, JHEP 06 (2010) 004 [ar**v:1001.4008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, Smeared versus localised sources in flux compactifications, JHEP 12 (2010) 043 [ar**v:1009.1877] [INSPIRE].

    Article  ADS  Google Scholar 

  3. J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, The problematic backreaction of SUSY-breaking branes, JHEP 08 (2011) 105 [ar**v:1105.4879] [INSPIRE].

    Article  ADS  Google Scholar 

  4. Y. Aghababaie, C. Burgess, J.M. Cline, H. Firouzjahi, S. Parameswaran, F. Quevedo, G. Tasinato and I. Zavala, Warped brane worlds in six-dimensional supergravity, JHEP 09 (2003) 037 [hep-th/0308064] [INSPIRE].

    Article  ADS  Google Scholar 

  5. C. Burgess, A. Maharana, L. van Nierop, A. Nizami and F. Quevedo, On brane back-reaction and de Sitter solutions in higher-dimensional supergravity, JHEP 04 (2012) 018 [ar**v:1109.0532] [INSPIRE].

    Article  ADS  Google Scholar 

  6. F.F. Gautason, D. Junghans and M. Zagermann, On cosmological constants from α-corrections, JHEP 06 (2012) 029 [ar**v:1204.0807] [INSPIRE].

    Article  ADS  Google Scholar 

  7. E. Witten, Dimensional reduction of superstring models, Phys. Lett. B 155 (1985) 151 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. C. Burgess, A. Font and F. Quevedo, Low-energy effective action for the superstring, Nucl. Phys. B 272 (1986) 661 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. O. DeWolfe, S. Kachru and M. Mulligan, A gravity dual of metastable dynamical supersymmetry breaking, Phys. Rev. D 77 (2008) 065011 [ar**v:0801.1520] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. P. McGuirk, G. Shiu and Y. Sumitomo, Non-supersymmetric infrared perturbations to the warped deformed conifold, Nucl. Phys. B 842 (2011) 383 [ar**v:0910.4581] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. I. Bena, M. Graña and N. Halmagyi, On the existence of meta-stable vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [ar**v:0912.3519] [INSPIRE].

    Article  ADS  Google Scholar 

  16. I. Bena, G. Giecold, M. Graña, N. Halmagyi and S. Massai, On metastable vacua and the warped deformed conifold: analytic results, Class. Quant. Grav. 30 (2013) 015003 [ar**v:1102.2403] [INSPIRE].

    Article  ADS  Google Scholar 

  17. I. Bena, G. Giecold, M. Graña, N. Halmagyi and S. Massai, The backreaction of \( \mathrm{D}3 \) branes on the Klebanov-Strassler geometry, JHEP 06 (2013) 060 [ar**v:1106.6165] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Dymarsky, On gravity dual of a metastable vacuum in Klebanov-Strassler theory, JHEP 05 (2011) 053 [ar**v:1102.1734] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Massai, A comment on anti-brane singularities in warped throats, ar**v:1202.3789 [INSPIRE].

  20. I. Bena, M. Graña, S. Kuperstein and S. Massai, \( \overline{{\mathrm{D}3}}\hbox{'}s \)singular to the bitter end, Phys. Rev. D 87 (2013) 106010 [ar**v:1206.6369] [INSPIRE].

    ADS  Google Scholar 

  21. I. Bena, M. Graña, S. Kuperstein and S. Massai, Polchinski-Strassler does not uplift Klebanov-Strassler, ar**v:1212.4828 [INSPIRE].

  22. I. Bena, A. Buchel and O.J. Dias, Horizons cannot save the landscape, Phys. Rev. D 87 (2013) 063012 [ar**v:1212.5162] [INSPIRE].

    ADS  Google Scholar 

  23. J. Blaback, U.H. Danielsson and T. Van Riet, Resolving anti-brane singularities through time-dependence, JHEP 02 (2013) 061 [ar**v:1202.1132] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, (Anti-)brane backreaction beyond perturbation theory, JHEP 02 (2012) 025 [ar**v:1111.2605] [INSPIRE].

    Article  ADS  Google Scholar 

  25. I. Bena, D. Junghans, S. Kuperstein, T. Van Riet, T. Wrase and M. Zagermann, Persistent anti-brane singularities, JHEP 10 (2012) 078 [ar**v:1205.1798] [INSPIRE].

    Article  ADS  Google Scholar 

  26. P. Koerber, Lectures on generalized complex geometry for physicists, Fortsch. Phys. 59 (2011) 169 [ar**v:1006.1536] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. E. Bergshoeff, R. Kallosh, T. Ortín, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. C.G. Callan Jr., C. Lovelace, C. Nappi and S. Yost, String loop corrections to β-functions, Nucl. Phys. B 288 (1987) 525 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. E. Cremmer, H. Lü, C. Pope and K. Stelle, Spectrum generating symmetries for BPS solitons, Nucl. Phys. B 520 (1998) 132 [hep-th/9707207] [INSPIRE].

    Article  ADS  Google Scholar 

  30. P.G. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett. B 97 (1980) 233 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].

  33. K. Becker and M. Becker, M theory on eight manifolds, Nucl. Phys. B 477 (1996) 155 [hep-th/9605053] [INSPIRE].

    Article  ADS  Google Scholar 

  34. B.R. Greene, K. Schalm and G. Shiu, Warped compactifications in M and F theory, Nucl. Phys. B 584 (2000) 480 [hep-th/0004103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. B. Janssen, P. Meessen and T. Ortín, The D8-brane tied up: string and brane solutions in massive type IIA supergravity, Phys. Lett. B 453 (1999) 229 [hep-th/9901078] [INSPIRE].

  36. C. Caviezel, P. Koerber, S. Körs, D. Lüst, T. Wrase and M. Zagermann, On the cosmology of type IIA compactifications on SU(3)-structure manifolds, JHEP 04 (2009) 010 [ar**v:0812.3551] [INSPIRE].

    Article  ADS  Google Scholar 

  37. U.H. Danielsson, S.S. Haque, P. Koerber, G. Shiu, T. Van Riet and T. Wrase, De Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [ar**v:1103.4858] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. B.S. Acharya, F. Benini and R. Valandro, Fixing moduli in exact type IIA flux vacua, JHEP 02 (2007) 018 [hep-th/0607223] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. T. Banks and K. van den Broek, Massive IIA flux compactifications and U-dualities, JHEP 03 (2007) 068 [hep-th/0611185] [INSPIRE].

    Article  ADS  Google Scholar 

  41. F. Saracco and A. Tomasiello, Localized O6-plane solutions with Romans mass, JHEP 07 (2012) 077 [ar**v:1201.5378] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. J. McOrist and S. Sethi, M-theory and type IIA flux compactifications, JHEP 12 (2012) 122 [ar**v:1208.0261] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].

    Article  ADS  Google Scholar 

  44. R. Minasian and D. Tsimpis, On the geometry of nontrivially embedded branes, Nucl. Phys. B 572 (2000) 499 [hep-th/9911042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. P. Koerber and L. Martucci, From ten to four and back again: how to generalize the geometry, JHEP 08 (2007) 059 [ar**v:0707.1038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, D3-brane potentials from fluxes in AdS/CFT, JHEP 06 (2010) 072 [ar**v:1001.5028] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. A. Dymarsky and L. Martucci, D-brane non-perturbative effects and geometric deformations, JHEP 04 (2011) 061 [ar**v:1012.4018] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. B. Heidenreich, L. McAllister and G. Torroba, Dynamic SU(2) structure from seven-branes, JHEP 05 (2011) 110 [ar**v:1011.3510] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. I. Bena, J. Blaback, U. Danielsson and T. Van Riet, Antibranes dont go black, Phys. Rev. D 87 (2013) 104023 [ar**v:1301.7071] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Zagermann.

Additional information

ArXiv ePrint: 1301.5647

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gautason, F.F., Junghans, D. & Zagermann, M. Cosmological constant, near brane behavior and singularities. J. High Energ. Phys. 2013, 123 (2013). https://doi.org/10.1007/JHEP09(2013)123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)123

Keywords

Navigation