Log in

Mutual information between thermo-field doubles and disconnected holographic boundaries

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We use mutual information as a measure of the entanglement between ‘physical’ and thermo-field double degrees of freedom in field theories at finite temperature. We compute this “thermo-mutual information” in simple toy models: a quantum mechanics two-site spin chain, a two dimensional massless fermion, and a two dimensional holographic system. In holographic systems, the thermo-mutual information is related to minimal surfaces connecting the two disconnected boundaries of an eternal black hole. We derive a number of salient features of this thermo-mutual information, including that it is UV finite, positive definite and bounded from above by the standard mutual information for the thermal ensemble. We relate the construction of the reduced density matrices used to define the thermo-mutual information to the Schwinger-Keldysh formalism, ensuring that all our objects are well defined in Euclidean and Lorentzian signature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Groisman, S. Popescu and A. Winter, Quantum, classical and total amount of correlations in a quantum state, Phys. Rev. A 72 (2005) 032317 [quant-ph/0410091].

    MathSciNet  ADS  Google Scholar 

  2. M.M. Wolf, F. Verstraete, M.B. Hastings and J.I. Cirac, Area laws in quantum systems: mutual information and correlations, Phys. Rev. Lett. 100 (2008) 070502 [ar**v:0704.3906].

    Article  MathSciNet  ADS  Google Scholar 

  3. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 06 (2004) P06002 [hep-th/0405152] [INSPIRE].

    Article  Google Scholar 

  4. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [ar**v:0905.4013] [INSPIRE].

    MathSciNet  Google Scholar 

  5. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [ar**v:0905.2562] [INSPIRE].

    MathSciNet  Google Scholar 

  6. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. G. Michalogiorgakis, Entanglement entropy of two dimensional systems and holography, JHEP 12 (2008) 068 [ar**v:0806.2661] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Schwimmer and S. Theisen, Entanglement entropy, trace anomalies and holography, Nucl. Phys. B 801 (2008) 1 [ar**v:0802.1017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [ar**v:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  10. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [ar**v:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [ar**v:0705.0016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093 [ar**v:1203.1044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114 [ar**v:1204.1698] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [ar**v:1204.1330] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev. D 86 (2012) 046009 [ar**v:1203.6619] [INSPIRE].

    ADS  Google Scholar 

  16. D. Marolf and A.C. Wall, Eternal black holes and superselection in AdS/CFT, Class. Quant. Grav. 30 (2013) 025001 [ar**v:1210.3590] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. H. Casini, Geometric entropy, area and strong subadditivity, Class. Quant. Grav. 21 (2004) 2351 [hep-th/0312238] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. J. Eisert, M. Cramer and M. Plenio, Area laws for the entanglement entropya review, Rev. Mod. Phys. 82 (2010) 277 [ar**v:0808.3773] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. G. Refael and J.E. Moore, Criticality and entanglement in random quantum systems, J. Phys. A 42 (2009) 4010 [ar**v:0908.1986].

    MathSciNet  Google Scholar 

  22. J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. L. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [Sov. Phys. JETP 20 (1965) 1018] [INSPIRE].

  24. N. Landsman and C. van Weert, Real and imaginary time field theory at finite temperature and density, Phys. Rept. 145 (1987) 141 [INSPIRE].

    Article  ADS  Google Scholar 

  25. Y. Takahashi and H. Umezawa, Thermo field dynamics, Int. J. Mod. Phys. B 10 (1996) 1755 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. J.J. Sakurai, Modern quantum mechanics (revised edition), first edition, Addison Wesley, U.S.A. (1993).

  27. P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in extended systems: a field theoretical approach, J. Stat. Mech. 02 (2013) P02008 [ar**v:1210.5359] [INSPIRE].

    Article  Google Scholar 

  28. P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in quantum field theory, Phys. Rev. Lett. 109 (2012) 130502 [ar**v:1206.3092] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A.K. Das, Finite temperature field theory, World Scientific Publishing Company, Singapore (1997).

    Book  Google Scholar 

  30. M. Headrick, A. Lawrence and M. Roberts, Bose-Fermi duality and entanglement entropies, J. Stat. Mech. 02 (2013) P02022 [ar**v:1209.2428] [INSPIRE].

    Article  Google Scholar 

  31. H. Casini, C. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech. 07 (2005) P07007 [cond-mat/0505563] [INSPIRE].

    Article  Google Scholar 

  32. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [ar**v:0905.0932] [INSPIRE].

    MathSciNet  Google Scholar 

  34. P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev. D 87 (2013) 046003 [ar**v:1107.2940] [INSPIRE].

    ADS  Google Scholar 

  35. W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. S. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. S. Aminneborg, I. Bengtsson, D. Brill, S. Holst and P. Peldan, Black holes and wormholes in (2 + 1)-dimensions, Class. Quant. Grav. 15 (1998) 627 [gr-qc/9707036] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. D. Brill, Black holes and wormholes in (2 + 1)-dimensions, gr-qc/9904083 [INSPIRE].

  41. K. Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000) 929 [hep-th/0005106] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  42. K. Krasnov, Black hole thermodynamics and Riemann surfaces, Class. Quant. Grav. 20 (2003) 2235 [gr-qc/0302073] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. K. Skenderis and B.C. van Rees, Holography and wormholes in 2 + 1 dimensions, Commun. Math. Phys. 301 (2011) 583 [ar**v:0912.2090] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, ar**v:1202.2070 [INSPIRE].

  45. R. Haag, N. Hugenholtz and M. Winnink, On the equilibrium states in quantum statistical mechanics, Commun. Math. Phys. 5 (1967) 215 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Morrison.

Additional information

ArXiv ePrint: 1211.2887

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrison, I.A., Roberts, M.M. Mutual information between thermo-field doubles and disconnected holographic boundaries. J. High Energ. Phys. 2013, 81 (2013). https://doi.org/10.1007/JHEP07(2013)081

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)081

Keywords

Navigation