Log in

Canonical approach to Courant brackets for D-branes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present an extension of the Courant bracket to the ones for Dp-branes by analyzing Hamiltonians and local superalgebras. Contrast to the basis of the bracket for a fundamental string which consists of the momentum and the winding modes, the ones for Dp-branes contain higher rank R-R coupling tensors. We show that the R-R gauge transformation rules are obtained by these Courant brackets for Dp-branes where the Dirac-Born-Infeld gauge field and the “two-vierbein field” play an essential role. Canonical analysis of the worldvolume theories naturally gives the basis of the brackets and the target space backgrounds kee** T-duality manifest at least for NS-NS sector. In a D3-brane analysis S-duality is manifest as a symmetry of interchanging the NS-NS coupling and the R-R coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. T. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Giveon, E. Rabinovici and G. Veneziano, Duality in String Background Space, Nucl. Phys. B 322 (1989) 167 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Giveon and M. Roček, Generalized duality in curved string backgrounds, Nucl. Phys. B 380 (1992) 128 [hep-th/9112070] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J. Maharana and J.H. Schwarz, Noncompact symmetries in string theory, Nucl. Phys. B 390 (1993) 3 [hep-th/9207016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

    ADS  Google Scholar 

  9. W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].

    ADS  Google Scholar 

  10. W. Siegel, Manifest duality in low-energy superstrings, hep-th/9308133 [INSPIRE].

  11. N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].

  13. C. Hull, A Geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Hull and R. Reid-Edwards, Flux compactifications of string theory on twisted tori, Fortsch. Phys. 57 (2009) 862 [hep-th/0503114] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [ar**v:0904.4664] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. C. Hull and B. Zwiebach, The Gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [ar**v:0908.1792] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. B. Zwiebach, Double Field Theory, T-duality and Courant Brackets, Lect. Notes Phys. 851 (2012)265 [ar**v:1109.1782] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. N. Obers and B. Pioline, U duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. C. Hull, Generalised Geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].

    Article  ADS  Google Scholar 

  21. D.S. Berman and M.J. Perry, Generalized Geometry and M-theory, JHEP 06 (2011) 074 [ar**v:1008.1763] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [ar**v:1103.5733] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The Local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [ar**v:1110.3930] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. P.P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [ar**v:0804.1362] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Graña, J. Louis, A. Sim and D. Waldram, E 7(7) formulation of \(\mathcal{N} = 2\) backgrounds backgrounds, JHEP 07 (2009) 104 [ar**v:0904.2333] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry I: Type II Theories, JHEP 11 (2011) 091 [ar**v:1107.1733] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d)×R + Generalised Geometry, Connections and M-theory, ar**v:1112.3989 [INSPIRE].

  28. A. Coimbra, C. Strickland-Constable and D. Waldram, Generalised Geometry and type-II Supergravity, ar**v:1202.3170 [INSPIRE].

  29. A. Alekseev and T. Strobl, Current algebras and differential geometry, JHEP 03 (2005) 035 [hep-th/0410183] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. M. Hatsuda and K. Kamimura, Covariant quantization of the super D string, Nucl. Phys. B 520 (1998) 493 [hep-th/9708001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. K. Kamimura and M. Hatsuda, Canonical formulation of IIB D-branes, Nucl. Phys. B 527 (1998) 381 [hep-th/9712068] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Abe, M. Hatsuda, K. Kamimura and T. Tokunaga, SO(2, 1) covariant IIB superalgebra, Nucl. Phys. B 553 (1999) 305 [hep-th/9903234] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. M. Hatsuda and K. Kamimura, Wess-Zumino actions for IIA D-branes and their supersymmetries, Nucl. Phys. B 535 (1998) 499 [hep-th/9804087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. G. Bonelli and M. Zabzine, From current algebras for p-branes to topological M-theory, JHEP 09 (2005) 015 [hep-th/0507051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. J. Ekstrand and M. Zabzine, Courant-like brackets and loop spaces, JHEP 03 (2011) 074 [ar**v:0903.3215] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Graña and D. Marques, Gauged Double Field Theory, JHEP 04 (2012) 020 [ar**v:1201.2924] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].

    Article  ADS  Google Scholar 

  38. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [ar**v:1006.4823] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [ar**v:1003.5027] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. C. Albertsson, T. Kimura and R.A. Reid-Edwards, D-branes and doubled geometry, JHEP 04 (2009) 113 [ar**v:0806.1783] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. C. Albertsson, S.-H. Dai, P.-W. Kao and F.-L. Lin, Double Field Theory for Double D-branes, JHEP 09 (2011) 025 [ar**v:1107.0876] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. M. Hatsuda and K. Kamimura, Classical AdS superstring mechanics, Nucl. Phys. B 611 (2001) 77 [hep-th/0106202] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. I. Bakhmatov, Fermionic T-duality and U-duality in type-II supergravity, ar**v:1112.1983 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Machiko Hatsuda.

Additional information

ArXiv ePrint: 1203.5499

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatsuda, M., Kimura, T. Canonical approach to Courant brackets for D-branes. J. High Energ. Phys. 2012, 34 (2012). https://doi.org/10.1007/JHEP06(2012)034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)034

Keywords

Navigation