Log in

Higgs-boson production at small transverse momentum

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Using methods from effective field theory, we have recently developed a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q T , in which large logarithms of the scale ratio m V /q T are resummed to all orders. This formalism is applied to the production of Higgs bosons in gluon fusion at the LHC. The production cross section receives logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale \( {q_{*}}\tilde{\mkern6mu} {m_H}{e^{{{{{-\mathrm{const}}} \left/ {{{\alpha_s}\left( {{m_H}} \right)}} \right.}}}}\approx 8 \) GeV, which protects the process from receiving large long-distance hadronic contributions. We present numerical predictions for the transverse-momentum spectrum of Higgs bosons produced at the LHC, finding that it is quite insensitive to hadronic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

    Article  ADS  Google Scholar 

  2. G. Ladinsky and C. Yuan, The nonperturbative regime in QCD resummation for gauge boson production at hadron colliders, Phys. Rev. D 50 (1994) 4239 [hep-ph/9311341] [INSPIRE].

    ADS  Google Scholar 

  3. Q.-H. Cao, C.-R. Chen, C. Schmidt and C.-P. Yuan, Improved predictions for Higgs Q T at the Tevatron and the LHC, ar**v:0909.2305 [INSPIRE].

  4. D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064 [ar**v:1109.2109] [INSPIRE].

    Article  Google Scholar 

  5. G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Production of Drell-Yan lepton pairs in hadron collisions: transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy, Phys. Lett. B 696 (2011) 207 [ar**v:1007.2351] [INSPIRE].

    ADS  Google Scholar 

  6. J. Wang, C.S. Li, Z. Li, C. Yuan and H.T. Li, Improved resummation prediction on Higgs production at hadron colliders, Phys. Rev. D 86 (2012) 094026 [ar**v:1205.4311] [INSPIRE].

    ADS  Google Scholar 

  7. S. Catani and M. Grazzini, Higgs boson production at hadron colliders: hard-collinear coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2013 [Erratum ibid. C 72 (2012) 2132] [ar**v:1106.4652] [INSPIRE].

  8. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Google Scholar 

  9. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  10. M. Beneke, A. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].

    Article  ADS  Google Scholar 

  11. T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [ar**v:1007.4005] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A formalism for the systematic treatment of rapidity logarithms in quantum field theory, JHEP 05 (2012) 084 [ar**v:1202.0814] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization theorem for Drell-Yan at low q T and transverse momentum distributions on-the-light-cone, JHEP 07 (2012) 002 [ar**v:1111.4996] [INSPIRE].

    Article  ADS  Google Scholar 

  14. Y. Gao, C.S. Li and J.J. Liu, Transverse momentum resummation for Higgs production in soft-collinear effective theory, Phys. Rev. D 72 (2005) 114020 [hep-ph/0501229] [INSPIRE].

    ADS  Google Scholar 

  15. A. Idilbi, X.-d. Ji and F. Yuan, Transverse momentum distribution through soft-gluon resummation in effective field theory, Phys. Lett. B 625 (2005) 253 [hep-ph/0507196] [INSPIRE].

    ADS  Google Scholar 

  16. S. Mantry and F. Petriello, Factorization and resummation of Higgs boson differential distributions in soft-collinear effective theory, Phys. Rev. D 81 (2010) 093007 [ar**v:0911.4135] [INSPIRE].

    ADS  Google Scholar 

  17. T. Becher, M. Neubert and D. Wilhelm, Electroweak gauge-boson production at small q T : infrared safety from the collinear anomaly, JHEP 02 (2012) 124 [ar**v:1109.6027] [INSPIRE].

    Article  ADS  Google Scholar 

  18. G. Parisi and R. Petronzio, Small transverse momentum distributions in hard processes, Nucl. Phys. B 154 (1979) 427 [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Banfi, G.P. Salam and G. Zanderighi, NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [ar**v:1203.5773] [INSPIRE].

    Article  ADS  Google Scholar 

  20. T. Becher and M. Neubert, Factorization and NNLL resummation for Higgs production with a jet veto, JHEP 07 (2012) 108 [ar**v:1205.3806] [INSPIRE].

    Article  ADS  Google Scholar 

  21. F.J. Tackmann, J.R. Walsh and S. Zuberi, Resummation properties of jet vetoes at the LHC, Phys. Rev. D 86 (2012) 053011 [ar**v:1206.4312] [INSPIRE].

    ADS  Google Scholar 

  22. A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [ar**v:1206.4998] [INSPIRE].

    Article  ADS  Google Scholar 

  23. X. Liu and F. Petriello, Resummation of jet-veto logarithms in hadronic processes containing jets, Phys. Rev. D 87 (2013) 014018 [ar**v:1210.1906] [INSPIRE].

    ADS  Google Scholar 

  24. S. Catani and M. Grazzini, QCD transverse-momentum resummation in gluon fusion processes, Nucl. Phys. B 845 (2011) 297 [ar**v:1011.3918] [INSPIRE].

    Article  ADS  Google Scholar 

  25. T. Becher, M. Neubert and D. Wilhelm, CuTe webpageresummed transverse momentum distributions for Drell-Yan, W, Z and Higgs production, http://cute.hepforge.org/.

  26. J.C. Collins and D.E. Soper, Parton distribution and decay functions, Nucl. Phys. B 194 (1982) 445 [INSPIRE].

    Article  ADS  Google Scholar 

  27. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: from PDFs to initial state jets, Phys. Rev. D 81 (2010) 094035 [ar**v:0910.0467] [INSPIRE].

    ADS  Google Scholar 

  28. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The quark beam function at NNLL, JHEP 09 (2010) 005 [ar**v:1002.2213] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Jain, M. Procura and W.J. Waalewijn, Fully-unintegrated parton distribution and fragmentation functions at perturbative k T , JHEP 04 (2012) 132 [ar**v:1110.0839] [INSPIRE].

    Article  ADS  Google Scholar 

  30. T. Becher and G. Bell, Analytic regularization in soft-collinear effective theory, Phys. Lett. B 713 (2012) 41 [ar**v:1112.3907] [INSPIRE].

    ADS  Google Scholar 

  31. J.-y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak corrections in high energy processes using effective field theory, Phys. Rev. D 77 (2008) 053004 [ar**v:0712.0396] [INSPIRE].

    ADS  Google Scholar 

  32. T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP 06 (2009) 081 [ar**v:0903.1126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [ar**v:0901.0722] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S. Frixione, P. Nason and G. Ridolfi, Problems in the resummation of soft gluon effects in the transverse momentum distributions of massive vector bosons in hadronic collisions, Nucl. Phys. B 542 (1999) 311 [hep-ph/9809367] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, private communication.

  36. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [ar**v:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  37. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J. C 62 (2009) 333 [ar**v:0809.4283] [INSPIRE].

    Article  ADS  Google Scholar 

  38. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the large perturbative corrections to Higgs production at hadron colliders, Phys. Rev. D 79 (2009) 033013 [ar**v:0808.3008] [INSPIRE].

    ADS  Google Scholar 

  39. A.V. Konychev and P.M. Nadolsky, Universality of the Collins-Soper-Sterman nonperturbative function in gauge boson production, Phys. Lett. B 633 (2006) 710 [hep-ph/0506225] [INSPIRE].

    ADS  Google Scholar 

  40. D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett. 82 (1999) 5209 [hep-ph/9902483] [INSPIRE].

    Article  ADS  Google Scholar 

  41. V. Ravindran, J. Smith and W. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].

    Article  ADS  Google Scholar 

  42. C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [INSPIRE].

    Article  ADS  Google Scholar 

  43. J. Campbell, K. Ellis and C. Williams, MCFM webpageMonte Carlo for FeMtobarn processes, http://mcfm.fnal.gov/.

  44. M. Grazzini, NNLO predictions for the Higgs boson signal in the HWWℓνℓν and HZZ →4ℓ decay channels, JHEP 02 (2008) 043 [ar**v:0801.3232] [INSPIRE].

    Article  ADS  Google Scholar 

  45. T. Gehrmann, T. Lübbert and L.L. Yang, Transverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark case, Phys. Rev. Lett. 109 (2012) 242003 [ar**v:1209.0682] [INSPIRE].

    Article  ADS  Google Scholar 

  46. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [ar**v:1207.1303] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Becher.

Additional information

ArXiv ePrint: 1212.2621

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becher, T., Neubert, M. & Wilhelm, D. Higgs-boson production at small transverse momentum. J. High Energ. Phys. 2013, 110 (2013). https://doi.org/10.1007/JHEP05(2013)110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)110

Keywords

Navigation