Log in

Gauge invariance at work in FDR: Hγγ

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present the first complete calculation performed within the Four Dimensional Regularization scheme (FDR), namely the loop-induced on-shell amplitude for the Higgs boson decay into two photons in an arbitrary R ξ gauge. FDR is a new technique-free of infinities- for addressing multi-loop calculus, which automatically preserves gauge invariance, allowing for a 4-dimensional computation at the same time. We obtained the same result as that assessed in dimensional regularization, thereby explicitly verifying, in a realistic case, that FDR respects gauge invariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [ar**v:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [ar**v:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. C. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [ar**v:0803.4180] [INSPIRE].

    ADS  Google Scholar 

  5. W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [ar**v:0801.2237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. R.K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, Phys. Rept. 518 (2012) 141 [ar**v:1105.4319] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Scattering amplitudes from multivariate polynomial division, Phys. Lett. B 718 (2012) 173 [ar**v:1205.7087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. P. Mastrolia and G. Ossola, On the integrand-reduction method for two-loop scattering amplitudes, JHEP 11 (2011) 014 [ar**v:1107.6041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Badger, H. Frellesvig and Y. Zhang, An integrand reconstruction method for three-loop amplitudes, JHEP 08 (2012) 065 [ar**v:1207.2976] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. H. Johansson, D.A. Kosower and K.J. Larsen, Two-loop maximal unitarity with external masses, Phys. Rev. D 87 (2013) 025030 [ar**v:1208.1754] [INSPIRE].

    ADS  Google Scholar 

  11. R.H. Kleiss, I. Malamos, C.G. Papadopoulos and R. Verheyen, Counting to one: reducibility of one- and two-loop amplitudes at the integrand level, JHEP 12 (2012) 038 [ar**v:1206.4180] [INSPIRE].

    Article  ADS  Google Scholar 

  12. G. ’t Hooft and M. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. D.Z. Freedman, K. Johnson and J.I. Latorre, Differential regularization and renormalization: a new method of calculation in quantum field theory, Nucl. Phys. B 371 (1992) 353 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. F. del Aguila, A. Culatti, R. Muñoz-Tapia and M. Pérez-Victoria, Constraining differential renormalization in Abelian gauge theories, Phys. Lett. B 419 (1998) 263 [hep-th/9709067] [INSPIRE].

    Article  ADS  Google Scholar 

  15. F. del Aguila, A. Culatti, R. Muñoz Tapia and M. Pérez-Victoria, Techniques for one loop calculations in constrained differential renormalization, Nucl. Phys. B 537 (1999) 561 [hep-ph/9806451] [INSPIRE].

    Article  ADS  Google Scholar 

  16. O. Battistel, A. Mota and M. Nemes, Consistency conditions for 4D regularizations, Mod. Phys. Lett. A 13 (1998) 1597 [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Cherchiglia, M. Sampaio and M. Nemes, Systematic implementation of implicit regularization for multi-loop Feynman diagrams, Int. J. Mod. Phys. A 26 (2011) 2591 [ar**v:1008.1377] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. G. Cynolter and E. Lendvai, Symmetry preserving regularization with a cutoff, Central Eur. J. Phys. 9 (2011) 1237 [ar**v:1002.4490] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Y.-L. Wu, Symmetry preserving loop regularization and renormalization of QFTs, Mod. Phys. Lett. A 19 (2004) 2191 [hep-th/0311082] [INSPIRE].

    Article  ADS  Google Scholar 

  20. R. Pittau, A four-dimensional approach to quantum field theories, JHEP 11 (2012) 151 [ar**v:1208.5457] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  22. B. Ioffe and V.A. Khoze, What can be expected from experiments on colliding e + e beams with e approximately equal to 100 GeV?, Sov. J. Part. Nucl. 9 (1978) 50 [Fiz. Elem. Chast. Atom. Yadra 9 (1978) 118] [INSPIRE].

  23. M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].

  24. T.G. Rizzo, Gluon final states in Higgs boson decay, Phys. Rev. D 22 (1980) 178 [Addendum ibid. D 22 (1980) 1824] [INSPIRE].

  25. A. Cherchiglia, L. Cabral, M. Nemes and M. Sampaio, (Un)determined finite regularization dependent quantum corrections: the Higgs decay into two photons and the two photon scattering examples, Phys. Rev. D 87 (2013) 065011 [ar**v:1210.6164] [INSPIRE].

    ADS  Google Scholar 

  26. H.-S. Shao, Y.-J. Zhang and K.-T. Chao, Higgs decay into two photons and reduction schemes in cutoff regularization, JHEP 01 (2012) 053 [ar**v:1110.6925] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Dedes and K. Suxho, Anatomy of the Higgs boson decay into two photons in the unitary gauge, ar**v:1210.0141 [INSPIRE].

  28. F. Piccinini, A. Pilloni and A. Polosa, Hγγ: a comment on the indeterminacy of non-gauge-invariant integrals, Chin. Phys. C 37 (2013) 043102 [ar**v:1112.4764] [INSPIRE].

    Article  ADS  Google Scholar 

  29. F. Jegerlehner, Comment on Hγγ and the role of the decoupling theorem and the equivalence theorem, ar**v:1110.0869 [INSPIRE].

  30. D. Huang, Y. Tang and Y.-L. Wu, Note on Higgs decay into two photons Hγγ, Commun. Theor. Phys. 57 (2012) 427 [ar**v:1109.4846] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. M. Shifman, A. Vainshtein, M. Voloshin and V. Zakharov, Higgs decay into two photons through the W -boson loop: no decoupling in the m W → 0 limit, Phys. Rev. D 85 (2012) 013015 [ar**v:1109.1785] [INSPIRE].

    ADS  Google Scholar 

  32. R. Gastmans, S.L. Wu and T.T. Wu, Higgs decay into two photons, revisited, ar**v:1108.5872 [INSPIRE].

  33. R. Gastmans, S.L. Wu and T.T. Wu, Higgs decay Hγγ through a W loop: difficulty with dimensional regularization, ar**v:1108.5322 [INSPIRE].

  34. F. Bursa, A. Cherman, T.C. Hammant, R.R. Horgan and M. Wingate, Calculation of the one W loop Hγγ decay amplitude with a lattice regulator, Phys. Rev. D 85 (2012) 093009 [ar**v:1112.2135] [INSPIRE].

    ADS  Google Scholar 

  35. W.J. Marciano, C. Zhang and S. Willenbrock, Higgs decay to two photons, Phys. Rev. D 85 (2012) 013002 [ar**v:1109.5304] [INSPIRE].

    ADS  Google Scholar 

  36. F. Jegerlehner, Facts of life with γ 5, Eur. Phys. J. C 18 (2001) 673 [hep-th/0005255] [INSPIRE].

    Article  ADS  Google Scholar 

  37. G. Passarino and M. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  38. P. Draggiotis, M. Garzelli, C. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [ar**v:0903.0356] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. M. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP 01 (2010) 040 [Erratum ibid. 10 (2010) 097] [ar**v:0910.3130] [INSPIRE].

  40. R. Pittau, Primary Feynman rules to calculate the ∈-dimensional integrand of any 1-loop amplitude, JHEP 02 (2012) 029 [ar**v:1111.4965] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  42. A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [ar**v:0709.1075] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pittau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donati, A.M., Pittau, R. Gauge invariance at work in FDR: Hγγ . J. High Energ. Phys. 2013, 167 (2013). https://doi.org/10.1007/JHEP04(2013)167

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)167

Keywords

Navigation