Log in

Higgs production with a central jet veto at NNLL+NNLO

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A major ingredient in Higgs searches at the Tevatron and LHC is the elimination of backgrounds with jets. In current HWWℓνℓν searches, jet algorithms are used to veto central jets to obtain a 0-jet sample, which is then analyzed to discover the Higgs signal. Imposing this tight jet veto induces large double logarithms which significantly modify the Higgs production cross section. These jet-veto logarithms are presently only accounted for at fixed order or with the leading-logarithmic summation from parton-shower Monte Carlos. Here we consider Higgs production with an inclusive event-shape variable for the jet veto, namely beam thrust \( {\mathcal{T}_{\text{cm}}} \), which has a close correspondence with a traditional p T jet veto. \( {\mathcal{T}_{\text{cm}}} \) allows us to systematically sum the large jet-veto logarithms to higher orders and to provide better estimates for theoretical uncertainties. We present results for the 0-jet Higgs production cross section from gluon fusion at next-to-next-to-leading-logarithmic order (NNLL), fully incorporating fixed-order results at next-to-next-to-leading order (NNLO). At this order the scale uncertainty is 15−20%, depending on the cut, implying that a larger scale uncertainty should be used in current Tevatron bounds on the Higgs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CDF and D0 collaboration, T. Aaltonen et al., Combination of Tevatron searches for the standard model Higgs boson in the W + W decay mode, Phys. Rev. Lett. 104 (2010) 061802 [ar**v:1001.4162] [SPIRES].

    Article  ADS  Google Scholar 

  2. The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS ExperimentDetector, Trigger and Physics, ar**v:0901.0512 [SPIRES].

  3. CMS collaboration, Search Strategy for a Standard Model Higgs Boson Decaying to Two W Bosons in the Fully Leptonic Final State, CMS report, CMS-PAS-HIG-08-006.

  4. M. Dittmar and H.K. Dreiner, How to find a Higgs boson with a mass between 155 GeV–180 GeV at the LHC, Phys. Rev. D 55 (1997) 167 [hep-ph/9608317] [SPIRES].

    ADS  Google Scholar 

  5. The CDF collaboration, T. Aaltonen et al., Inclusive Search for Standard Model Higgs Boson Production in the WW Decay Channel using the CDF II Detector, Phys. Rev. Lett. 104 (2010) 061803 [ar**v:1001.4468] [SPIRES].

    Article  ADS  Google Scholar 

  6. The D0 collaboration, V.M. Abazov et al., Search for Higgs boson production in dilepton and missing energy final states with ∼ 5.4fb−1 of \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 104 (2010) 061804 [ar**v:1001.4481] [SPIRES].

    Article  ADS  Google Scholar 

  7. CDF and D0 collaboration, Combined CDF and D0 Upper Limits on Standard Model Higgs-Boson Production with up to 6.7 fb −1 of Data, ar**v:1007.4587 [SPIRES].

  8. C. Anastasiou, G. Dissertori, M. Grazzini, F. Stockli and B.R. Webber, Perturbative QCD effects and the search for a HWWℓνℓν signal at the Tevatron, JHEP 08 (2009) 099 [ar**v:0905.3529] [SPIRES].

    Article  ADS  Google Scholar 

  9. J. Baglio and A. Djouadi, Predictions for Higgs production at the Tevatron and the associated uncertainties, JHEP 10 (2010) 064 [ar**v:1003.4266] [SPIRES].

    Article  ADS  Google Scholar 

  10. F. Demartin, S. Forte, E. Mariani, J. Rojo and A. Vicini, The impact of PDF and alphas uncertainties on Higgs Production in gluon fusion at hadron colliders, Phys. Rev. D 82 (2010) 014002 [ar**v:1004.0962] [SPIRES].

    ADS  Google Scholar 

  11. J. Baglio and A. Djouadi, Addendum to: Predictions for Higgs production at the Tevatron and the associated uncertainties, ar**v:1009.1363.

  12. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [SPIRES].

    Article  ADS  Google Scholar 

  13. A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [SPIRES].

    ADS  Google Scholar 

  14. M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [SPIRES].

    Article  ADS  Google Scholar 

  15. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [SPIRES].

    Article  ADS  Google Scholar 

  16. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [SPIRES].

    Article  ADS  Google Scholar 

  17. V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [SPIRES].

    Article  ADS  Google Scholar 

  18. A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [ar**v:0911.4662] [SPIRES].

    Article  ADS  Google Scholar 

  19. R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [ar**v:0912.2104] [SPIRES].

    Article  ADS  Google Scholar 

  20. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two-loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [SPIRES].

    ADS  Google Scholar 

  21. S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders, Phys. Lett. B 670 (2008) 12 [ar**v:0809.1301] [SPIRES].

    ADS  Google Scholar 

  22. C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [ar**v:0811.3458] [SPIRES].

    Article  ADS  Google Scholar 

  23. A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [SPIRES].

    Article  ADS  Google Scholar 

  24. R. Boughezal, Theoretical Status of Higgs Production at Hadron Colliders in the SM, ar**v:0908.3641 [SPIRES].

  25. C. Anastasiou, G. Dissertori, F. Stockli and B.R. Webber, QCD radiation effects on the HWWℓνℓν signal at the LHC, JHEP 03 (2008) 017 [ar**v:0801.2682] [SPIRES].

    Article  ADS  Google Scholar 

  26. S. Catani, D. de Florian and M. Grazzini, Direct Higgs production and jet veto at the Tevatron and the LHC in NNLO QCD, JHEP 01 (2002) 015 [hep-ph/0111164] [SPIRES].

    Article  ADS  Google Scholar 

  27. C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: Differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [SPIRES].

    Article  ADS  Google Scholar 

  28. G. Davatz et al., Combining Monte Carlo generators with next-to-next-to-leading order calculations: Event reweighting for Higgs boson production at the LHC, JHEP 07 (2006) 037 [hep-ph/0604077] [SPIRES].

    Article  ADS  Google Scholar 

  29. C. Anastasiou, G. Dissertori and F. Stockli, NNLO QCD predictions for the HWWℓνℓν signal at the LHC, JHEP 09 (2007) 018 [ar**v:0707.2373] [SPIRES].

    Article  ADS  Google Scholar 

  30. M. Grazzini, NNLO predictions for the Higgs boson signal in the HWWℓνℓν and HZZ → 4ℓ decay channels, JHEP 02 (2008) 043 [ar**v:0801.3232] [SPIRES].

    Article  ADS  Google Scholar 

  31. E.L. Berger, Q.-H. Cao, C.B. Jackson, T. Liu and G. Shaughnessy, Higgs Boson Search Sensitivity in the HW W Dilepton Decay Mode at \( \sqrt {s} = 7 \) and 10 TeV, Phys. Rev. D 82 (2010) 053003 [ar**v:1003.3875] [SPIRES].

    ADS  Google Scholar 

  32. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].

    Article  ADS  Google Scholar 

  33. S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production, JHEP 08 (2003) 007 [hep-ph/0305252] [SPIRES].

    Article  ADS  Google Scholar 

  34. S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POW HEG, JHEP 04 (2009) 002 [ar**v:0812.0578] [SPIRES].

    Article  ADS  Google Scholar 

  35. K. Hamilton, P. Richardson and J. Tully, A Positive-Weight Next-to-Leading Order Monte Carlo Simulation for Higgs Boson Production, JHEP 04 (2009) 116 [ar**v:0903.4345] [SPIRES].

    Article  ADS  Google Scholar 

  36. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  37. T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [ar**v:0710.3820] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  38. G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].

    Article  ADS  Google Scholar 

  39. G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [SPIRES].

  40. D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett. 82 (1999) 5209 [hep-ph/9902483] [SPIRES].

    Article  ADS  Google Scholar 

  41. V. Ravindran, J. Smith and W.L. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [SPIRES].

    Article  ADS  Google Scholar 

  42. C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [SPIRES].

    Article  ADS  Google Scholar 

  43. C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [SPIRES].

    Article  ADS  Google Scholar 

  44. J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [SPIRES].

    Article  ADS  Google Scholar 

  45. C. Balázs and C.P. Yuan, Higgs boson production at the LHC with soft gluon effects, Phys. Lett. B 478 (2000) 192 [hep-ph/0001103] [SPIRES].

    ADS  Google Scholar 

  46. E.L. Berger and J.-w. Qiu, Differential cross section for Higgs boson production including all-orders soft gluon resummation, Phys. Rev. D 67 (2003) 034026 [hep-ph/0210135] [SPIRES].

    Article  ADS  Google Scholar 

  47. G. Bozzi, S. Catani, D. de Florian and M. Grazzini, The q T spectrum of the Higgs boson at the LHC in QCD perturbation theory, Phys. Lett. B 564 (2003) 65 [hep-ph/0302104] [SPIRES].

    ADS  Google Scholar 

  48. A. Kulesza, G.F. Sterman and W. Vogelsang, Joint resummation for Higgs production, Phys. Rev. D 69 (2004) 014012 [hep-ph/0309264] [SPIRES].

    ADS  Google Scholar 

  49. A. Idilbi, X.-d. Ji and F. Yuan, Transverse momentum distribution through soft-gluon resummation in effective field theory, Phys. Lett. B 625 (2005) 253 [hep-ph/0507196] [SPIRES].

    ADS  Google Scholar 

  50. G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [SPIRES].

    Article  ADS  Google Scholar 

  51. S. Mantry and F. Petriello, Factorization and Resummation of Higgs Boson Differential Distributions in Soft-Collinear Effective Theory, Phys. Rev. D 81 (2010) 093007 [ar**v:0911.4135] [SPIRES].

    ADS  Google Scholar 

  52. E. Laenen, G.F. Sterman and W. Vogelsang, Recoil and threshold corrections in short distance cross-sections, Phys. Rev. D 63 (2001) 114018 [hep-ph/0010080] [SPIRES].

    ADS  Google Scholar 

  53. D. de Florian and M. Grazzini, Higgs production through gluon fusion: updated cross sections at the Tevatron and the LHC, Phys. Lett. B 674 (2009) 291 [ar**v:0901.2427] [SPIRES].

    ADS  Google Scholar 

  54. G. Davatz, G. Dissertori, M. Dittmar, M. Grazzini and F. Pauss, Effective K-factors for ggHWWℓνℓν at the LHC, JHEP 05 (2004) 009 [hep-ph/0402218] [SPIRES].

    Article  ADS  Google Scholar 

  55. A. Papaefstathiou, J.M. Smillie and B.R. Webber, Resummation of transverse energy in vector boson and Higgs boson production at hadron colliders, JHEP 04 (2010) 084 [ar**v:1002.4375] [SPIRES].

    Article  ADS  Google Scholar 

  56. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D 81 (2010) 094035 [ar**v:0910.0467] [SPIRES].

    ADS  Google Scholar 

  57. S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft-gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [SPIRES].

    Article  ADS  Google Scholar 

  58. S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [SPIRES].

    ADS  Google Scholar 

  59. A. Idilbi, X.-d. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [SPIRES].

    ADS  Google Scholar 

  60. E. Laenen and L. Magnea, Threshold resummation for electroweak annihilation from DIS data, Phys. Lett. B 632 (2006) 270 [hep-ph/0508284] [SPIRES].

    ADS  Google Scholar 

  61. V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [SPIRES].

    Article  ADS  Google Scholar 

  62. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Updated Predictions for Higgs Production at the Tevatron and the LHC, Phys. Lett. B 698 (2011) 271 [ar**v:1008.3162] [SPIRES].

    ADS  Google Scholar 

  63. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [ar**v:1004.2489] [SPIRES].

    Article  ADS  Google Scholar 

  64. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [ar**v:0901.0002] [SPIRES].

    Article  ADS  Google Scholar 

  65. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [ar**v:0802.1189] [SPIRES].

    Article  ADS  Google Scholar 

  66. M. Cacciari, G. P. Salam and G. Soyez, http://fastjet.fr/.

  67. N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution, Phys. Rev. D 82 (2010) 114030 [ar**v:1009.4935] [SPIRES].

    ADS  Google Scholar 

  68. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Quark Beam Function at NNLL, JHEP 09 (2010) 005 [ar**v:1002.2213] [SPIRES].

    Article  ADS  Google Scholar 

  69. S. Fleming, A.K. Leibovich and T. Mehen, Resummation of Large Endpoint Corrections to Color-Octet J/ψ Photoproduction, Phys. Rev. D 74 (2006) 114004 [hep-ph/0607121] [SPIRES].

    ADS  Google Scholar 

  70. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [SPIRES].

    ADS  Google Scholar 

  71. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [SPIRES].

    ADS  Google Scholar 

  72. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [SPIRES].

    ADS  Google Scholar 

  73. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft-Collinear Factorization in Effective Field Theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [SPIRES].

    ADS  Google Scholar 

  74. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [SPIRES].

    ADS  Google Scholar 

  75. Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [ar**v:0807.1926] [SPIRES].

    ADS  Google Scholar 

  76. R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [SPIRES].

    Article  ADS  Google Scholar 

  77. C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [SPIRES].

    Article  ADS  Google Scholar 

  78. R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: virtual corrections, Phys. Lett. B 679 (2009) 467 [ar**v:0907.2997] [SPIRES].

    ADS  Google Scholar 

  79. A. Pak, M. Rogal and M. Steinhauser, Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass, Phys. Lett. B 679 (2009) 473 [ar**v:0907.2998] [SPIRES].

    ADS  Google Scholar 

  80. G. Parisi, Summing Large Perturbative Corrections in QCD, Phys. Lett. B 90 (1980) 295 [SPIRES].

    ADS  Google Scholar 

  81. G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections, Nucl. Phys. B 281 (1987) 310 [SPIRES].

    Article  ADS  Google Scholar 

  82. L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [SPIRES].

    ADS  Google Scholar 

  83. T.O. Eynck, E. Laenen and L. Magnea, Exponentiation of the Drell-Yan cross section near partonic threshold in the DIS and \( \overline {\text{MS}} \) schemes, JHEP 06 (2003) 057 [hep-ph/0305179] [SPIRES].

    Article  ADS  Google Scholar 

  84. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the Large Perturbative Corrections to Higgs Production at Hadron Colliders, Phys. Rev. D 79 (2009) 033013 [ar**v:0808.3008] [SPIRES].

    ADS  Google Scholar 

  85. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders, Eur. Phys. J. C 62 (2009) 333 [ar**v:0809.4283] [SPIRES].

    Article  ADS  Google Scholar 

  86. J.-y. Chiu, R. Kelley and A.V. Manohar, Electroweak Corrections using Effective Field Theory: Applications to the LHC, Phys. Rev. D 78 (2008) 073006 [ar**v:0806.1240] [SPIRES].

    ADS  Google Scholar 

  87. J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC, Phys. Rev. D 80 (2009) 094013 [ar**v:0909.0012] [SPIRES].

    ADS  Google Scholar 

  88. S. Mantry and F. Petriello, Transverse Momentum Distributions from Effective Field Theory with Numerical Results, Phys. Rev. D 83 (2011) 053007 [ar**v:1007.3773] [SPIRES].

    ADS  Google Scholar 

  89. M.D. Schwartz, Resummation and NLO Matching of Event Shapes with Effective Field Theory, Phys. Rev. D 77 (2008) 014026 [ar**v:0709.2709] [SPIRES].

    ADS  Google Scholar 

  90. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev. D 77 (2008) 114003 [ar**v:0711.2079] [SPIRES].

    ADS  Google Scholar 

  91. A.H. Hoang and I.W. Stewart, Designing Gapped Soft Functions for Jet Production, Phys. Lett. B 660 (2008) 483 [ar**v:0709.3519] [SPIRES].

    ADS  Google Scholar 

  92. R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with Power Corrections and a Precision Global Fit for alphas(mZ), ar**v:1006.3080 [SPIRES].

  93. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Uncertainties on α s in global PDF analyses and implications for predicted hadronic cross sections, Eur. Phys. J. C 64 (2009) 653 [ar**v:0905.3531] [SPIRES].

    Article  ADS  Google Scholar 

  94. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Beam Thrust Cross Section for Drell-Yan at NNLL Order, Phys. Rev. Lett. 106 (2011) 032001 [ar**v:1005.4060] [SPIRES].

    Article  ADS  Google Scholar 

  95. A.V. Manohar and I.W. Stewart, The zero-bin and mode factorization in quantum field theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [SPIRES].

    ADS  Google Scholar 

  96. G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [SPIRES].

    Article  ADS  Google Scholar 

  97. S. Dawson and R. Kauffman, QCD corrections to Higgs boson production: nonleading terms in the heavy quark limit, Phys. Rev. D 49 (1994) 2298 [hep-ph/9310281] [SPIRES].

    ADS  Google Scholar 

  98. W. Furmanski and R. Petronzio, Singlet Parton Densities Beyond Leading Order, Phys. Lett. B 97 (1980) 437 [SPIRES].

    ADS  Google Scholar 

  99. R.K. Ellis and W. Vogelsang, The evolution of parton distributions beyond leading order: the singlet case, hep-ph/9602356 [SPIRES].

  100. O.V. Tarasov, A.A. Vladimirov and A.Y. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [SPIRES].

    ADS  Google Scholar 

  101. S.A. Larin and J.A.M. Vermaseren, The Three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [SPIRES].

    ADS  Google Scholar 

  102. A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: The singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  103. S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [SPIRES].

    ADS  Google Scholar 

  104. A. Idilbi, X.-d. Ji and F. Yuan, Resummation of Threshold Logarithms in Effective Field Theory For DIS, Drell-Yan and Higgs Production, Nucl. Phys. B 753 (2006) 42 [hep-ph/0605068] [SPIRES].

    Article  ADS  Google Scholar 

  105. T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP 02 (2010) 040 [ar**v:0911.0681] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Tackmann.

Additional information

Ar**v ePrint: 1012.4480

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, C.F., Marcantonini, C., Stewart, I.W. et al. Higgs production with a central jet veto at NNLL+NNLO. J. High Energ. Phys. 2011, 92 (2011). https://doi.org/10.1007/JHEP04(2011)092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)092

Keywords

Navigation