Log in

The a-theorem and conformal symmetry breaking in holographic RG flows

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study holographic models describing an RG flow between two fixed points driven by a relevant scalar operator. We show how to introduce a spurion field to restore Weyl invariance and compute the anomalous contribution to the generating functional in even dimensional theories. We find that the coefficient of the anomalous term is proportional to the difference of the conformal anomalies of the UV and IR fixed points, as expected from anomaly matching arguments in field theory. For any even dimensions the coefficient is positive as implied by the holographic a-theorem. For flows corresponding to spontaneous breaking of conformal invariance, we also compute the two-point functions of the energy-momentum tensor and the scalar operator and identify the dilaton mode. Surprisingly we find that in the simplest models with just one scalar field there is no dilaton pole in the two-point function of the scalar operator but a stronger singularity. We discuss the possible implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [ar**v:1107.3987] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. Z. Komargodski, The constraints of conformal symmetry on RG flows, JHEP 07 (2012) 069 [ar**v:1112.4538] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. J.L. Cardy, Is there a c theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. A. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. M.A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the asymptotics of 4D quantum field theory, JHEP 01 (2013) 152 [ar**v:1204.5221] [INSPIRE].

    Article  ADS  Google Scholar 

  6. J.-F. Fortin, B. Grinstein and A. Stergiou, Limit cycles in four dimensions, JHEP 12 (2012) 112 [ar**v:1206.2921] [INSPIRE].

    Article  ADS  Google Scholar 

  7. H. Elvang et al., On renormalization group flows and the a-theorem in 6D, JHEP 10 (2012) 011 [ar**v:1205.3994] [INSPIRE].

    Article  ADS  Google Scholar 

  8. J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].

    Article  Google Scholar 

  9. E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett. B 442 (1998) 152 [hep-th/9806217] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. V. Balasubramanian and P. Kraus, Space-time and the holographic renormalization group, Phys. Rev. Lett. 83 (1999) 3605 [hep-th/9903190] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Freedman, S. Gubser, K. Pilch and N. Warner, Continuous distributions of D3-branes and gauged supergravity, JHEP 07 (2000) 038 [hep-th/9906194] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The supergravity dual of N = 1 super Yang-Mills theory, Nucl. Phys. B 569 (2000) 451 [hep-th/9909047] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. D.Z. Freedman, S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  16. F. Bigazzi, RG flows toward IR isolated fixed points: some type 0 samples, JHEP 06 (2001) 068 [hep-th/0101232] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Berg and H. Samtleben, An exact holographic RG flow between 2D conformal fixed points, JHEP 05 (2002) 006 [hep-th/0112154] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. N. Halmagyi, K. Pilch, C. Romelsberger and N. Warner, Holographic duals of a family of N =1 fixed points, JHEP 08 (2006) 083[hep-th/0506206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. K. Hotta, Y. Hyakutake, T. Kubota, T. Nishinaka and H. Tanida, The CFT-interpolating black hole in three dimensions, JHEP 01 (2009) 010 [ar**v:0811.0910] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. G. Arutyunov, S. Frolov and S. Theisen, A note on gravity scalar fluctuations in holographic RG flow geometries, Phys. Lett. B 484 (2000) 295 [hep-th/0003116] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. D. Martelli and A. Miemiec, CFT/CFT interpolating RG flows and the holographic c function, JHEP 04 (2002) 027 [hep-th/0112150] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253 [INSPIRE].

  23. D. Freedman, C. Núñez, M. Schnabl and K. Skenderis, Fake supergravity and domain wall stability, Phys. Rev. D 69 (2004) 104027 [hep-th/0312055] [INSPIRE].

    ADS  Google Scholar 

  24. E. Alvarez and C. Gomez, Geometric holography, the renormalization group and the c theorem, Nucl. Phys. B 541 (1999) 441 [hep-th/9807226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [ar**v:1011.5819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Penrose and W. Rindler, Spinors and space-time. Volume 2: spinor and twistor methods in space-time geometry, Cambridge University Press, Cambridge U.K. (1986).

  27. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. L.-Y. Hung, R.C. Myers and M. Smolkin, Some calculable contributions to holographic entanglement entropy, JHEP 08 (2011) 039 [ar**v:1105.6055] [INSPIRE].

    Article  ADS  Google Scholar 

  29. N. Boulanger, Algebraic classification of Weyl anomalies in arbitrary dimensions, Phys. Rev. Lett. 98 (2007) 261302 [ar**v:0706.0340] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. W. Mueck, Correlation functions in holographic renormalization group flows, Nucl. Phys. B 620 (2002) 477 [hep-th/0105270] [INSPIRE].

    Article  ADS  Google Scholar 

  31. I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. O. DeWolfe and D.Z. Freedman, Notes on fluctuations and correlation functions in holographic renormalization group flows, hep-th/0002226 [INSPIRE].

  33. K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. K. Skenderis and P.K. Townsend, Hidden supersymmetry of domain walls and cosmologies, Phys. Rev. Lett. 96 (2006) 191301 [hep-th/0602260] [INSPIRE].

    Article  ADS  Google Scholar 

  35. K. Skenderis and P.K. Townsend, Hamilton-Jacobi method for curved domain walls and cosmologies, Phys. Rev. D 74 (2006) 125008 [hep-th/0609056] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. A. Schwimmer and S. Theisen, Spontaneous breaking of conformal invariance and trace anomaly matching, Nucl. Phys. B 847 (2011) 590 [ar**v:1011.0696] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys. 31 (1973) 259 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. N. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17 (1966) 1133 [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Porrati and A. Starinets, RG fixed points in supergravity duals of 4D field theory and asymptotically AdS spaces, Phys. Lett. B 454 (1999) 77 [hep-th/9903085] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. M. Berg and H. Samtleben, Holographic correlators in a flow to a fixed point, JHEP 12 (2002) 070 [hep-th/0209191] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. S. Weinberg, The quantum theory of fields. Volume 2: modern applications, Cambridge University Press, Cambridge U.K. (1996).

  46. D. Nickel and D.T. Son, Deconstructing holographic liquids, New J. Phys. 13 (2011) 075010 [ar**v:1009.3094] [INSPIRE].

    Article  ADS  Google Scholar 

  47. D. Anselmi, D. Freedman, M.T. Grisaru and A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. D. Anselmi, J. Erlich, D. Freedman and A. Johansen, Positivity constraints on anomalies in supersymmetric gauge theories, Phys. Rev. D 57 (1998) 7570 [hep-th/9711035] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [ar**v:1006.1263] [INSPIRE].

    ADS  Google Scholar 

  50. R.A. Ferrell and D.J. Scalapino, Order-parameter correlations within the screening approximation, Phys. Rev. Lett. 29 (1972) 413 [INSPIRE].

    Article  ADS  Google Scholar 

  51. T. Brauner, Spontaneous symmetry breaking and Nambu-Goldstone bosons in quantum many-body systems, Symmetry 2 (2010) 609 [ar**v:1001.5212] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  52. H.B. Nielsen and S. Chadha, On how to count goldstone bosons, Nucl. Phys. B 105 (1976) 445 [INSPIRE].

    Article  ADS  Google Scholar 

  53. M.S. Costa, Absorption by double centered D3-branes and the Coulomb branch of N = 4 SYM theory, JHEP 05 (2000) 041 [hep-th/9912073] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M.S. Costa, A test of the AdS/CFT duality on the Coulomb branch, Phys. Lett. B 482 (2000) 287 [Erratum ibid. B 489 (2000) 439] [hep-th/0003289] [INSPIRE].

    ADS  Google Scholar 

  55. I.R. Klebanov and A. Murugan, Gauge/gravity duality and warped resolved conifold, JHEP 03 (2007) 042 [hep-th/0701064] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. D. Martelli and J. Sparks, Baryonic branches and resolutions of Ricci-flat Kähler cones, JHEP 04 (2008) 067 [ar**v:0709.2894] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. L.A. Pando Zayas and A.A. Tseytlin, 3-branes on resolved conifold, JHEP 11 (2000) 028 [hep-th/0010088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Kol.

Additional information

ArXiv ePrint: 1207.0006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyos, C., Kol, U., Sonnenschein, J. et al. The a-theorem and conformal symmetry breaking in holographic RG flows. J. High Energ. Phys. 2013, 63 (2013). https://doi.org/10.1007/JHEP03(2013)063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)063

Keywords

Navigation