Log in

Confinement in anti-de Sitter space

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Four dimensional gauge theories in anti-de Sitter space, including pure Yang-Mills theory, exhibit a quantum phase transition between a deconfined phase and a confined phase as the gauge coupling is varied. We explore various mechanisms by which this may occur, both in a fixed background and in the presence of gravity. We also make a number of observations on the dynamics of four dimensional supersymmetric gauge theories in anti-de Sitter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Greensite, An introduction to the confinement problem, Lect. Notes Phys. 821 (2011) 1 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  2. C.G. Callan Jr. and F. Wilczek, Infrared behavior at negative curvature, Nucl. Phys. B 340 (1990) 366 [INSPIRE].

    Article  ADS  Google Scholar 

  3. A.M. Polyakov, Quark confinement and topology of gauge groups, Nucl. Phys. B 120 (1977) 429 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Ünsal, Abelian duality, confinement, and chiral symmetry breaking in a SU(2) QCD-like theory, Phys. Rev. Lett. 100 (2008) 032005 [ar**v:0708.1772] [INSPIRE].

    Article  ADS  Google Scholar 

  5. M. Ünsal, Magnetic bion condensation: a new mechanism of confinement and mass gap in four dimensions, Phys. Rev. D 80 (2009) 065001 [ar**v:0709.3269] [INSPIRE].

    ADS  Google Scholar 

  6. M. Shifman and M. Ünsal, QCD-like theories on R 3 × S 1 : a smooth journey from small to large r(S 1) with double-trace deformations, Phys. Rev. D 78 (2008) 065004 [ar**v:0802.1232] [INSPIRE].

    ADS  Google Scholar 

  7. M. Ünsal and L.G. Yaffe, Center-stabilized Yang-Mills theory: confinement and large-N volume independence, Phys. Rev. D 78 (2008) 065035 [ar**v:0803.0344] [INSPIRE].

    ADS  Google Scholar 

  8. E. Poppitz and M. Ünsal, Conformality or confinement (II): one-flavor CFTs and mixed-representation QCD, JHEP 12 (2009) 011 [ar**v:0910.1245] [INSPIRE].

    Article  ADS  Google Scholar 

  9. E. Poppitz and M. Ünsal, Seiberg-Witten andPolyakov-likemagnetic bion confinements are continuously connected, JHEP 07 (2011) 082 [ar**v:1105.3969] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  11. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  13. D. Marolf and S.F. Ross, Boundary conditions and new dualities: vector fields in AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. S.W. Hawking and S.F. Ross, Duality between electric and magnetic black holes, Phys. Rev. D 52 (1995) 5865 [hep-th/9504019] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. E. Witten, SL(2, \( \mathbb{Z} \)) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE].

  16. P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [ar**v:1109.5176] [INSPIRE].

    Article  ADS  Google Scholar 

  18. P. Kovtun and A. Ritz, Universal conductivity and central charges, Phys. Rev. D 78 (2008) 066009 [ar**v:0806.0110] [INSPIRE].

    ADS  Google Scholar 

  19. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. I.R. Klebanov, J.M. Maldacena and C.B. Thorn, Dynamics of flux tubes in large N gauge theories, JHEP 04 (2006) 024 [hep-th/0602255] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. B. Sundborg, The Hagedorn transition, deconfinement and N = 4 SYM theory, Nucl. Phys. B 573 (2000) 349 [hep-th/9908001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn/deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  23. O. Aharony, D. Marolf and M. Rangamani, Conformal field theories in anti-de Sitter space, JHEP 02 (2011) 041 [ar**v:1011.6144] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A natural language for AdS/CFT correlators, JHEP 11 (2011) 095 [ar**v:1107.1499] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP 10 (2011) 074 [ar**v:1107.1504] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Logayanagam, Bulk confinement of a boundary symmetry, talk given at the Chandrasekhar Discussion Meeting, ICTS, Mumbai India, Mar 2011, http://www.icts.res.in/media/uploads/Talk/Slides/DamThanh/22march/logayanagam.pdf.

  27. S.W. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  29. A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. O. Aharony, Y.E. Antebi and M. Berkooz, Open string moduli in KKLT compactifications, Phys. Rev. D 72 (2005) 106009 [hep-th/0508080] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. J. Polchinski and E. Silverstein, Dual purpose landsca** tools: small extra dimensions in AdS/CFT, ar**v:0908.0756 [INSPIRE].

  35. B. Zumino, Nonlinear realization of supersymmetry in de Sitter space, Nucl. Phys. B 127 (1977) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  36. E.A. Ivanov and A.S. Sorin, Superfield formulation of Osp(1, 4) supersymmetry, J. Phys. A 13 (1980) 1159 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. N. Sakai and Y. Tanii, Supersymmetry and vacuum energy in anti-de Sitter space, Phys. Lett. B 146 (1984) 38 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. C.P. Burgess, Supersymmetry breaking and vacuum energy on anti-de Sitter space, Nucl. Phys. B 259 (1985) 473 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. C.P. Burgess and C.A. Lütken, Propagators and effective potentials in anti-de Sitter space, Phys. Lett. B 153 (1985) 137 [INSPIRE].

    Article  ADS  Google Scholar 

  40. C.J.C. Burges, D.Z. Freedman, S. Davis and G.W. Gibbons, Supersymmetry in anti-de Sitter space, Annals Phys. 167 (1986) 285 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. A. Adams, H. Jockers, V. Kumar and J.M. Lapan, N = 1 σ-models in AdS 4, JHEP 12 (2011) 042 [ar**v:1104.3155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [ar**v:1105.0689] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. B. Allen and C.A. Lütken, Spinor two point functions in maximally symmetric spaces, Commun. Math. Phys. 106 (1986) 201 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. B. Gripaios, H.D. Kim, R. Rattazzi, M. Redi and C. Scrucca, Gaugino mass in AdS space, JHEP 02 (2009) 043 [ar**v:0811.4504] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. M. Porrati and L. Girardello, The three dimensional dual of 4D chirality, JHEP 11 (2009) 114 [ar**v:0908.3487] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. G. Veneziano and S. Yankielowicz, An effective Lagrangian for the pure N = 1 supersymmetric Yang-Mills theory, Phys. Lett. B 113 (1982) 231 [INSPIRE].

    Article  ADS  Google Scholar 

  47. I.I. Kogan, A. Kovner and M.A. Shifman, More on supersymmetric domain walls, N counting and glued potentials, Phys. Rev. D 57 (1998) 5195 [hep-th/9712046] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. S. Bolognesi and D. Tong, Magnetic catalysis in AdS 4, Class. Quant. Grav. 29 (2012) 194003 [ar**v:1110.5902] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

  50. O. Aharony, L. Berdichevsky, M. Berkooz and I. Shamir, Near-horizon solutions for D3-branes ending on 5-branes, Phys. Rev. D 84 (2011) 126003 [ar**v:1106.1870] [INSPIRE].

    ADS  Google Scholar 

  51. D. Gaiotto and E. Witten, Supersymmetric boundary conditions in N = 4 super Yang-Mills theory, J. Statist. Phys. 135 (2009) 789 [ar**v:0804.2902] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. D. Gaiotto and E. Witten, Janus configurations, Chern-Simons couplings, and the θ-angle in N =4 super Yang-Mills theory, JHEP 06 (2010) 097 [ar**v:0804.2907] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [ar**v:0807.3720] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge theory, hep-th/0003136 [INSPIRE].

  55. J.M. Maldacena and C. Núñez, Towards the large-N limit of pure N = 1 super Yang-Mills, Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact terms, unitarity and F-maximization in three-dimensional superconformal theories, JHEP 10 (2012) 053 [ar**v:1205.4142] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons contact terms in three dimensions, JHEP 09 (2012) 091 [ar**v:1206.5218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Aharony.

Additional information

ArXiv ePrint: 1210.5195

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aharony, O., Berkooz, M., Tong, D. et al. Confinement in anti-de Sitter space. J. High Energ. Phys. 2013, 76 (2013). https://doi.org/10.1007/JHEP02(2013)076

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2013)076

Keywords

Navigation