Log in

Analytic epsilon expansion of three-loop on-shell master integrals up to four-loop transcendentality weight

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We evaluate analytically higher terms of the ϵ-expansion of the three-loop master integrals corresponding to three-loop quark and gluon form factors and to the three-loop master integrals contributing to the electron g − 2 in QED up to the transcendentality weight typical to four-loop calculations, i.e. eight and seven, respectively. The calculation is based on a combination of a method recently suggested by one of the authors (R.L.) with other techniques: sector decomposition implemented in FIESTA, the method of Mellin-Barnes representation, and the PSLQ algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.N. Lee, Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys. B 830 (2010) 474 [ar**v:0911.0252] [SPIRES].

    Article  ADS  Google Scholar 

  2. O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. R.N. Lee, A.V. Smirnov and V.A. Smirnov, Analytic results for massless three-loop form factors, JHEP 04 (2010) 020 [ar**v:1001.2887] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. R.N. Lee, A.V. Smirnov and V.A. Smirnov, Dimensional recurrence relations: an easy way to evaluate higher orders of expansion in ϵ, Nucl. Phys. Proc. Suppl. 205 206 (2010) 308 [ar**v:1005.0362] [SPIRES].

    Article  Google Scholar 

  5. R.N. Lee, Calculating multiloop integrals using dimensional recurrence relation and D-analyticity, Nucl. Phys. Proc. Suppl. 205 206 (2010) 135 [ar**v:1007.2256] [SPIRES].

    Article  Google Scholar 

  6. T. Gehrmann, G. Heinrich, T. Huber and C. Studerus, Master integrals for massless three-loop form factors: one-loop and two-loop insertions, Phys. Lett. B 640 (2006) 252 [hep-ph/0607185] [SPIRES].

    ADS  Google Scholar 

  7. G. Heinrich, T. Huber and D. Maître, Master integrals for fermionic contributions to massless three-loop form factors, Phys. Lett. B 662 (2008) 344 [ar**v:0711.3590] [SPIRES].

    ADS  Google Scholar 

  8. P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [ar**v:0902.3519] [SPIRES].

    Article  ADS  Google Scholar 

  9. G. Heinrich, T. Huber, D.A. Kosower and V.A. Smirnov, Nine-propagator master integrals for massless three-loop form factors, Phys. Lett. B 678 (2009) 359 [ar**v:0902.3512] [SPIRES].

    ADS  Google Scholar 

  10. T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [ar**v:1004.3653] [SPIRES].

    Article  ADS  Google Scholar 

  11. S. Laporta and E. Remiddi, The analytical value of the electron (g − 2) at order α 3 in QED, Phys. Lett. B 379 (1996) 283 [hep-ph/9602417] [SPIRES].

    ADS  Google Scholar 

  12. S. Laporta and E. Remiddi, The electron (g(e) − 2) and the value of α: a check of QED at 1 ppb, Acta Phys. Polon. B 28 (1997) 959 [SPIRES].

    Google Scholar 

  13. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Revised value of the eighth-order electron g − 2, Phys. Rev. Lett. 99 (2007) 110406 [ar**v:0706.3496] [SPIRES].

    Article  ADS  Google Scholar 

  14. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-order lepton g − 2: contribution of some fourth-order radiative corrections to the sixth-order g − 2 containing light-by-light-scattering subdiagrams, Phys. Rev. D 82 (2010) 113004 [ar**v:1009.3077] [SPIRES].

    ADS  Google Scholar 

  15. S. Laporta and E. Remiddi, Status of the QED prediction of the electron (g − 2), Nucl. Phys. Proc. Suppl. 181 182 (2008) 10 [SPIRES].

    Article  Google Scholar 

  16. K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [SPIRES].

    Article  ADS  Google Scholar 

  17. S. Laporta, High-precision calculation of multi-loop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. S. Laporta, Calculation of master integrals by difference equations, Phys. Lett. B 504 (2001) 188 [hep-ph/0102032] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. S. Laporta, High-precision ϵ-expansions of three-loop master integrals contributing to the electron g − 2 in QED, Phys. Lett. B 523 (2001) 95 [hep-ph/0111123] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. H.R.P. Ferguson, D.H. Bailey and S. Arno, Analysis of PSLQ, an integer relation finding algorithm, NASA-Ames Technical Report NAS-96-005, Math. Comput. 68 (1999) 351.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. K. Melnikov and T. van Ritbergen, The three-loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [SPIRES].

    ADS  Google Scholar 

  22. K. Melnikov and T. van Ritbergen, The three-loop on-shell renormalization of QCD and QED, Nucl. Phys. B 591 (2000) 515 [hep-ph/0005131] [SPIRES].

    Article  ADS  Google Scholar 

  23. K.G. Chetyrkin and M. Steinhauser, Short distance mass of a heavy quark at order α s 3, Phys. Rev. Lett. 83 (1999) 4001 [hep-ph/9907509] [SPIRES].

    Article  ADS  Google Scholar 

  24. K.G. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order α s 3, Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [SPIRES].

    Article  ADS  Google Scholar 

  25. J. Blumlein, D.J. Broadhurst and J.A.M. Vermaseren, The multiple zeta value data mine, Comput. Phys. Commun. 181 (2010) 582 [ar**v:0907.2557] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. T. Huber and D. Maître, HypExp 2, expanding hypergeometric functions about half-integer parameters, Comput. Phys. Commun. 178 (2008) 755 [ar**v:0708.2443] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  27. R.N. Lee, Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals, JHEP 07 (2008) 031 [ar**v:0804.3008] [SPIRES].

    Article  ADS  Google Scholar 

  28. A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [ar**v:0807.3243] [SPIRES].

    Article  ADS  Google Scholar 

  29. T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multi-loop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. T. Binoth and G. Heinrich, Numerical evaluation of multi-loop integrals by sector decomposition, Nucl. Phys. B 680 (2004) 375 [hep-ph/0305234] [SPIRES].

    Article  ADS  Google Scholar 

  31. T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 134 [hep-ph/0402265] [SPIRES].

    Article  ADS  Google Scholar 

  32. G. Heinrich, Sector decomposition, Int. J. Mod. Phys. A 23 (2008) 1457 [ar**v:0803.4177] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. C. Bogner and S. Weinzierl, Resolution of singularities for multi-loop integrals, Comput. Phys. Commun. 178 (2008) 596 [ar**v:0709.4092] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. C. Bogner and S. Weinzierl, Blowing up Feynman integrals, Nucl. Phys. Proc. Suppl. 183 (2008) 256 [ar**v:0806.4307] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. A.V. Smirnov and M.N. Tentyukov, Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA), Comput. Phys. Commun. 180 (2009) 735 [ar**v:0807.4129] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  36. A.V. Smirnov, V.A. Smirnov and M. Tentyukov, FIESTA 2: parallelizeable multiloop numerical calculations, Comput. Phys. Commun. 182 (2011) 790 [ar**v:0912.0158] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. V.A. Smirnov, Analytical result for dimensionally regularized massless on-shell double box, Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [SPIRES].

    ADS  Google Scholar 

  38. J.B. Tausk, Non-planar massless two-loop Feynman diagrams with four on-shell legs, Phys. Lett. B 469 (1999) 225 [hep-ph/9909506] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  40. A.V. Smirnov and V.A. Smirnov, On the resolution of singularities of multiple Mellin-Barnes integrals, Eur. Phys. J. C 62 (2009) 445 [ar**v:0901.0386] [SPIRES].

    Article  ADS  Google Scholar 

  41. V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Mod. Phys. 211 (2004) 1 [SPIRES].

    Article  Google Scholar 

  42. V.A. Smirnov, Feynman integral calculus, Springer, Berlin Germany (2006) [SPIRES].

    Google Scholar 

  43. D. Maître, HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Lee.

Additional information

Ar**v ePrint: 1010.1334

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, R.N., Smirnov, V.A. Analytic epsilon expansion of three-loop on-shell master integrals up to four-loop transcendentality weight. J. High Energ. Phys. 2011, 102 (2011). https://doi.org/10.1007/JHEP02(2011)102

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2011)102

Keywords

Navigation