Log in

Natural vacuum alignment from group theory: the minimal case

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Discrete flavour symmetries have been proven successful in explaining the leptonic flavour structure. To account for the observed mixing pattern, the flavour symmetry has to be broken to different subgroups in the charged and neutral lepton sector. However, cross-couplings via non-trivial contractions in the scalar potential force the group to break to the same subgroup. We present a solution to this problem by extending the flavour group in such a way that it preserves the flavour structure, but leads to an ’accidental’ symmetry in the flavon potential.

We have searched for symmetry groups up to order 1000, which forbid all dangerous cross-couplings and extend one of the interesting groups A 4, T 7, S 4, T′ or Δ(27). We have found a number of candidate groups and present a model based on one of the smallest extensions of A 4, namely \( {{Q}_8} \rtimes {{A}_4} \). We show that the most general nonsupersymmetric potential allows for the correct vacuum alignment. We investigate the effects of higher dimensional operators on the vacuum configuration and mixing angles, and give a see-saw-like UV completion. Finally, we discuss the supersymmetrization of the model. Additionally, we release the Mathematica package Discrete providing various useful tools for model building such as easily calculating invariants of discrete groups and flavon potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13 : addendum to ’Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [ar**v:1108.1376] [INSPIRE].

    Article  ADS  Google Scholar 

  2. T. Schwetz, M. Tortola and J. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [ar**v:1103.0734] [INSPIRE].

    Article  ADS  Google Scholar 

  3. G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno, Evidence of θ 13 > 0 from global neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [ar**v:1106.6028] [INSPIRE].

    ADS  Google Scholar 

  4. M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [ar**v:1001.4524] [INSPIRE].

    Article  ADS  Google Scholar 

  5. T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [ar**v:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  6. CHOOZ collaboration, M. Apollonio et al., Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [INSPIRE].

    ADS  Google Scholar 

  7. P. Harrison, D. Perkins and W. Scott, A redetermination of the neutrino mass squared difference in tri-maximal mixing with terrestrial matter effects, Phys. Lett. B 458 (1999) 79 [hep-ph/9904297] [INSPIRE].

    ADS  Google Scholar 

  8. P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].

    ADS  Google Scholar 

  9. P. Harrison and W. Scott, Symmetries and generalizations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].

    ADS  Google Scholar 

  10. MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [ar**v:1108.0015] [INSPIRE].

    Article  ADS  Google Scholar 

  11. C.D. Froggatt H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  12. K. Babu and X.-G. He, Model of geometric neutrino mixing, hep-ph/0507217 [INSPIRE].

  13. E. Ma, A 4 symmetry and neutrinos with very different masses, Phys. Rev. D 70 (2004) 031901 [hep-ph/0404199] [INSPIRE].

    ADS  Google Scholar 

  14. K. Babu, E. Ma and J. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [INSPIRE].

    ADS  Google Scholar 

  15. E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [INSPIRE].

    ADS  Google Scholar 

  16. X.-G. He, Y.-Y. Keum and R.R. Volkas, A 4 flavor symmetry breaking scheme for understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 [hep-ph/0601001] [INSPIRE].

    Article  ADS  Google Scholar 

  17. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [INSPIRE].

    Article  ADS  Google Scholar 

  19. C. Luhn, S. Nasri and P. Ramond, Tri-bimaximal neutrino mixing and the family symmetry semidirect product of Z(7) and Z(3), Phys. Lett. B 652 (2007) 27 [ar**v:0706.2341] [INSPIRE].

    ADS  Google Scholar 

  20. S. Pakvasa and H. Sugawara, Mass of the t quark in SU(2) × U(1), Phys. Lett. B 82 (1979) 105 [INSPIRE].

    ADS  Google Scholar 

  21. Y. Yamanaka and H. Sugawara, Permutation symmetries and the fermion mass matrix, Phys. Rev. D 25 (1982) 1895 [Erratum ibid. D29 (1984) 2135+ [INSPIRE].

    ADS  Google Scholar 

  22. T. Brown et al., CP nonconservation and rare processes in S 4 model of permutation symmetry, Phys. Lett. B 141 (1984) 95 [INSPIRE].

    ADS  Google Scholar 

  23. T. Brown et al., Neutrino masses, mixing and oscillations in S 4 model of permutation symmetry, Phys. Rev. D 30 (1984) 255 [INSPIRE]

    ADS  Google Scholar 

  24. D.-G. Lee and R. Mohapatra, An SO(10) × S 4 scenario for naturally degenerate neutrinos, Phys. Lett. B 329 (1994) 463 [hep-ph/9403201] [INSPIRE].

    ADS  Google Scholar 

  25. E. Ma, Neutrino mass matrix from S 4 symmetry, Phys. Lett. B 632 (2006) 352 [hep-ph/0508231] [INSPIRE].

    ADS  Google Scholar 

  26. C. Hagedorn, M. Lindner and R. Mohapatra, S 4 flavor symmetry and fermion masses: towards a grand unified theory of flavor, JHEP 06 (2006) 042 [hep-ph/0602244] [INSPIRE].

    Article  ADS  Google Scholar 

  27. Y. Cai and H.-B. Yu, A SO(10) GUT model with S 4 flavor symmetry, Phys. Rev. D 74 (2006) 115005 [hep-ph/0608022] [INSPIRE].

    ADS  Google Scholar 

  28. F. Caravaglios and S. Morisi, Gauge boson families in grand unified theories of fermion masses: \( E_6^4 \times {{S}_4} \), Int. J. Mod. Phys. A 22 (2007) 2469 [hep-ph/0611078] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. H. Zhang, Flavor S 4 × Z(2) symmetry and neutrino mixing, Phys. Lett. B 655 (2007) 132 [hep-ph/0612214] [INSPIRE].

    ADS  Google Scholar 

  30. Y. Koide, S 4 flavor symmetry embedded into SU(3) and lepton masses and mixing, JHEP 08 (2007) 086 [ar**v:0705.2275] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Parida, Intermediate left-right gauge symmetry, unification of couplings and fermion masses in SUSY SO(10) × S 4, Phys. Rev. D 78 (2008) 053004 [ar**v:0804.4571] [INSPIRE].

    Article  ADS  Google Scholar 

  32. F. Bazzocchi and S. Morisi, S 4 as a natural flavor symmetry for lepton mixing, Phys. Rev. D 80 (2009) 096005 [ar**v:0811.0345] [INSPIRE].

    ADS  Google Scholar 

  33. H. Ishimori, Y. Shimizu and M. Tanimoto, S 4 flavor symmetry of quarks and leptons in SU(5) GUT, Prog. Theor. Phys. 121 (2009) 769 [ar**v:0812.5031] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. F. Bazzocchi, L. Merlo and S. Morisi, Phenomenological consequences of see-saw in S 4 based models, Phys. Rev. D 80 (2009) 053003 [ar**v:0902.2849] [INSPIRE].

    ADS  Google Scholar 

  35. G. Altarelli, F. Feruglio and L. Merlo, Revisiting bimaximal neutrino mixing in a model with S 4 discrete symmetry, JHEP 05 (2009) 020 [ar**v:0903.1940] [INSPIRE].

    Article  ADS  Google Scholar 

  36. H. Ishimori, Y. Shimizu and M. Tanimoto, S 4 flavor model of quarks and leptons, Prog. Theor. Phys. Suppl. 180 (2010) 61 [ar**v:0904.2450] [INSPIRE].

    Article  ADS  Google Scholar 

  37. W. Grimus, L. Lavoura and P. Ludl, Is S 4 the horizontal symmetry of tri-bimaximal lepton mixing?, J. Phys. G 36 (2009) 115007 [ar**v:0906.2689] [INSPIRE].

    ADS  Google Scholar 

  38. G.-J. Ding, Fermion masses and flavor mixings in a model with S 4 flavor symmetry, Nucl. Phys. B 827 (2010) 82 [ar**v:0909.2210] [INSPIRE].

    Article  ADS  Google Scholar 

  39. D. Meloni, A see-saw S 4 model for fermion masses and mixings, J. Phys. G 37 (2010) 055201 [ar**v:0911.3591] [INSPIRE].

    ADS  Google Scholar 

  40. S. Morisi and E. Peinado, An S 4 model for quarks and leptons with maximal atmospheric angle, Phys. Rev. D 81 (2010) 085015 [ar**v:1001.2265] [INSPIRE].

    ADS  Google Scholar 

  41. B. Dutta, Y. Mimura and R. Mohapatra, An SO(10) grand unified theory of flavor, JHEP 05 (2010) 034 [ar**v:0911.2242] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. C. Lam, The unique horizontal symmetry of leptons, Phys. Rev. D 78 (2008) 073015 [ar**v:0809.1185] [INSPIRE].

    ADS  Google Scholar 

  43. R. Mohapatra, M. Parida and G. Rajasekaran, High scale mixing unification and large neutrino mixing angles, Phys. Rev. D 69 (2004) 053007 [hep-ph/0301234] [INSPIRE].

    ADS  Google Scholar 

  44. G.-J. Ding, Fermion mass hierarchies and flavor mixing from T -prime symmetry, Phys. Rev. D 78 (2008) 036011 [ar**v:0803.2278] [INSPIRE].

    ADS  Google Scholar 

  45. P.H. Frampton and S. Matsuzaki, T -prime predictions of PMNS and CKM angles, Phys. Lett. B 679 (2009) 347 [ar**v:0902.1140] [INSPIRE].

    ADS  Google Scholar 

  46. P.H. Frampton and T.W. Kephart, Flavor symmetry for quarks and leptons, JHEP 09 (2007) 110 [ar**v:0706.1186] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Aranda, Neutrino mixing from the double tetrahedral group T -prime, Phys. Rev. D 76 (2007) 111301 [ar**v:0707.3661] [INSPIRE].

    ADS  Google Scholar 

  48. P.D. Carr and P.H. Frampton, Group theoretic bases for tribimaximal mixing, hep-ph/0701034 [INSPIRE].

  49. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Tri-bimaximal neutrino mixing and quark masses from a discrete flavour symmetry, Nucl. Phys. B 775 (2007) 120 [Erratum ibid. 836 (2010) 127-128] [hep-ph/0702194] [INSPIRE].

    Article  ADS  Google Scholar 

  50. M.-C. Chen and K. Mahanthappa, CKM and tri-bimaximal MNS matrices in a SU(5) × (d) T model, Phys. Lett. B 652 (2007) 34 [ar**v:0705.0714] [INSPIRE].

    ADS  Google Scholar 

  51. F. Bazzocchi and I. de Medeiros Varzielas, Tri-bi-maximal mixing in viable family symmetry unified model with extended seesaw, Phys. Rev. D 79 (2009) 093001 [ar**v:0902.3250] [INSPIRE].

    ADS  Google Scholar 

  52. C. Luhn, S. Nasri and P. Ramond, The flavor group Δ(3n 2), J. Math. Phys. 48 (2007) 073501 [hep-th/0701188] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. W. Grimus and L. Lavoura, A model for trimaximal lepton mixing, JHEP 09 (2008) 106 [ar**v:0809.0226] [INSPIRE].

    Article  ADS  Google Scholar 

  54. I. de Medeiros Varzielas, S. King and G. Ross, Neutrino tri-bi-maximal mixing from a non-abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [INSPIRE].

    ADS  Google Scholar 

  55. Y. Shimizu, M. Tanimoto and A. Watanabe, Breaking tri-bimaximal mixing and large θ 13, Prog. Theor. Phys. 126 (2011) 81 [ar**v:1105.2929] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  56. R.d.A. Toorop, F. Feruglio and C. Hagedorn, Discrete flavour symmetries in light of T2K, Phys. Lett. B 703 (2011) 447 [ar**v:1107.3486] [INSPIRE].

    ADS  Google Scholar 

  57. T. Kobayashi, Y. Omura and K. Yoshioka, Flavor symmetry breaking and vacuum alignment on orbifolds, Phys. Rev. D 78 (2008) 115006 [ar**v:0809.3064] [INSPIRE].

    ADS  Google Scholar 

  58. K. Babu and S. Gabriel, Semidirect product groups, vacuum alignment and tribimaximal neutrino mixing, Phys. Rev. D 82 (2010) 073014 [ar**v:1006.0203] [INSPIRE].

    ADS  Google Scholar 

  59. GAP group, GAP — Groups, Algorithms, and Programming. Version 4.4.12, http://www.gap-system.org.

  60. H.U. Besche, B. Eick and E.O’Brien, SmallGroups — Library of all ’small’ groups. GAP package, version included in GAP 4.4.12 http://www.gap-system.org/Packages/sgl.html.

  61. K.M. Parattu and A. Wingerter, Tribimaximal mixing from small groups, Phys. Rev. D 84 (2011) 013011 [ar**v:1012.2842] [INSPIRE].

    ADS  Google Scholar 

  62. W. Grimus and P.O. Ludl, Finite flavour groups of fermions, ar**v:1110.6376 [INSPIRE].

  63. S.F. King and C. Luhn, On the origin of neutrino flavour symmetry, JHEP 10 (2009) 093 [ar**v:0908.1897] [INSPIRE].

    Article  ADS  Google Scholar 

  64. B. Brahmachari, S. Choubey and M. Mitra, The A 4 flavor symmetry and neutrino phenomenology, Phys. Rev. D 77 (2008) 073008 [Erratum ibid. D 77 (2008) 119901] [ar**v:0801.3554] [INSPIRE].

    ADS  Google Scholar 

  65. J. Barry and W. Rodejohann, Deviations from tribimaximal mixing due to the vacuum expectation value misalignment in A 4 models, Phys. Rev. D 81 (2010) 093002 [Erratum ibid. D 81 (2010) 119901] [ar**v:1003.2385] [INSPIRE].

    ADS  Google Scholar 

  66. G. Altarelli, F. Feruglio and Y. Lin, Tri-bimaximal neutrino mixing from orbifolding, Nucl. Phys. B 775 (2007) 31 [hep-ph/0610165] [INSPIRE].

    Article  ADS  Google Scholar 

  67. M. Honda and M. Tanimoto, Deviation from tri-bimaximal neutrino mixing in A 4 flavor symmetry, Prog. Theor. Phys. 119 (2008) 583 [ar**v:0801.0181] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  68. S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [INSPIRE].

    Article  ADS  Google Scholar 

  69. M. Lattanzi and J. Valle, Decaying warm dark matter and neutrino masses, Phys. Rev. Lett. 99 (2007) 121301 [ar**v:0705.2406] [INSPIRE].

    Article  ADS  Google Scholar 

  70. P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    ADS  Google Scholar 

  71. T. Yanagida, Horizontal symmetry and masses of neutrinos, in the proceedings of the Workshop on the unified theory and the baryon number in the universe, O. Sawada ed., KEK, Tsukuba Japan (1979).

  72. S.L. Glashow, The future of elementary particle physics, in the proceedings of the 1979 Cargèse summer institute on quarks and leptons, M. Levy et al. eds., Plenum Press, New York U.S.A. (1980).

  73. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North Holland, Amsterdam The Netherlands (1979).

  74. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  75. J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  76. J. Schechter and J.W.F. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev. D 25 (1982) 774 [INSPIRE].

    ADS  Google Scholar 

  77. M. Malinsky, J. Romao and J. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].

    Article  ADS  Google Scholar 

  78. F. Feruglio, C. Hagedorn and L. Merlo, Vacuum alignment in SUSY A 4 models, JHEP 03 (2010) 084 [ar**v:0910.4058] [INSPIRE].

    Article  ADS  Google Scholar 

  79. G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

    Article  ADS  Google Scholar 

  80. S. Antusch, S.F. King, M. Malinsky and G.G. Ross, Solving the SUSY flavour and CP problems with non-abelian family symmetry and supergravity, Phys. Lett. B 670 (2009) 383 [ar**v:0807.5047] [INSPIRE].

    ADS  Google Scholar 

  81. V. Dabbaghian, REPSN — For constructing representations of finite groups, GAP package, Version 3.0.2, http://www.gap-system.org/Packages/repsn.html.

  82. A. Merle and R. Zwicky, Explicit and spontaneous breaking of SU(3) into its finite subgroups, ar**v:1110.4891 [INSPIRE].

  83. P.M. van Den Broek and J.F. Cornwell, Clebsch-Gordan coefficients of symmetry groups, Phys. Status Solidi B 90 (1978) 211.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Schmidt.

Additional information

ArXiv ePrint: 1111.1730

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holthausen, M., Schmidt, M.A. Natural vacuum alignment from group theory: the minimal case. J. High Energ. Phys. 2012, 126 (2012). https://doi.org/10.1007/JHEP01(2012)126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)126

Keywords

Navigation