Log in

Quantum back reaction to asymptotically AdS black holes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We analyze the effects of the back reaction due to a conformal field theory (CFT) on a black hole spacetime with negative cosmological constant. We study the geometry numerically obtained by taking into account the energy momentum tensor of CFT approximated by a radiation fluid. We find a sequence of configurations without a horizon in thermal equilibrium (CFT stars), followed by a sequence of configurations with a horizon. We discuss the thermodynamic properties of the system and how back reaction effects alter the space-time structure. We also provide an interpretation of the above sequence of solutions in terms of the AdS/CFT correspondence. The dual five-dimensional description is given by the Karch-Randall model, in which a sequence of five-dimensional floating black holes followed by a sequence of brane localized black holes correspond to the above solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  3. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105114 [SPIRES].

    MathSciNet  Google Scholar 

  4. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. J. Garriga and T. Tanaka, Gravity in the brane-world, Phys. Rev. Lett. 84 (2000) 2778 [hep-th/9911055] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. S.S. Gubser, AdS/CFT and gravity, Phys. Rev. D 63 (2001) 084017 [hep-th/9912001] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. S.W. Hawking, T. Hertog and H.S. Reall, Brane new world, Phys. Rev. D 62 (2000) 043501 [hep-th/0003052] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. S. Nojiri, O. Obregon and S.D. Odintsov, (Non)-singular brane-world cosmology induced by quantum effects in D5 dilatonic gravity, Phys. Rev. D 62 (2000) 104003 [hep-th/0005127] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. S. Nojiri and S.D. Odintsov, Brane world inflation induced by quantum effects, Phys. Lett. B 484 (2000) 119 [hep-th/0004097] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. S. Nojiri, S.D. Odintsov and S. Zerbini, Quantum (in)stability of dilatonic AdS backgrounds and holographic renormalization group with gravity, Phys. Rev. D 62 (2000) 064006 [hep-th/0001192] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. T. Tanaka, AdS/CFT correspondence in a Friedmann-Lemaitre-Robertson-Walker brane, gr-qc/0402068 [SPIRES].

  12. L. Grisa and O. Pujolàs, Dressed domain walls and holography, JHEP 06 (2008) 059 [ar**v:0712.2786] [SPIRES].

    Article  ADS  Google Scholar 

  13. M.J. Duff and J.T. Liu, Complementarity of the Maldacena and Randall-Sundrum pictures, Class. Quant. Grav. 18 (2001) 3207 [hep-th/0003237] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. T. Tanaka, Classical black hole evaporation in Randall-Sundrum infinite braneworld, Prog. Theor. Phys. Suppl. 148 (2003) 307 [gr-qc/0203082] [SPIRES].

    Article  ADS  Google Scholar 

  15. T. Shiromizu and D. Ida, Anti-de Sitter no hair, AdS/CFT and the brane-world, Phys. Rev. D 64 (2001) 044015 [hep-th/0102035] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. J. Garriga and M. Sasaki, Brane-world creation and black holes, Phys. Rev. D 62 (2000) 043523 [hep-th/9912118] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. H. Kudoh, T. Tanaka and T. Nakamura, Small localized black holes in braneworld: formulation and numerical method, Phys. Rev. D 68 (2003) 024035 [gr-qc/0301089] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. H. Yoshino, On the existence of a static black hole on a brane, JHEP 01 (2009) 068 [ar**v:0812.0465] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. R. Emparan, A. Fabbri and N. Kaloper, Quantum black holes as holograms in AdS braneworlds, JHEP 08 (2002) 043 [hep-th/0206155] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. T. Tanaka, Connection between classical black hole evaporation conjecture and floating black holes, Prog. Theor. Phys. Suppl. 121 (2009) 1133 [SPIRES].

    Google Scholar 

  22. A. Flachi and T. Tanaka, Vacuum polarization in asymptotically anti-de Sitter black hole geometries, Phys. Rev. D 78 (2008) 064011 [ar**v:0803.3125] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. D.N. Page, Thermal stress tensors in static Einstein spaces, Phys. Rev. D 25 (1982) 1499 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. A. Karch and L. Randall, Localized gravity in string theory, Phys. Rev. Lett. 87 (2001) 061601 [hep-th/0105108] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. R. Gregory, S.F. Ross and R. Zegers, Classical and quantum gravity of brane black holes, JHEP 09 (2008) 029 [ar**v:0802.2037] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. P.R. Anderson, W.A. Hiscock and D.A. Samuel, Stress-energy tensor of quantized scalar fields in static spherically symmetric space-times, Phys. Rev. D 51 (1995) 4337 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. M. Porrati, Higgs phenomenon for 4D gravity in Anti de Sitter space, JHEP 04 (2002) 058 [hep-th/0112166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. M.J. Duff, J.T. Liu and H. Sati, Complementarity of the Maldacena and Karch-Randall pictures, Phys. Rev. D 69 (2004) 085012 [hep-th/0207003] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. S.S. Gubser, I.R. Klebanov and A.W. Peet, Entropy and temperature of black 3-branes, Phys. Rev. D 54 (1996) 3915 [hep-th/9602135] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. D.N. Page and K.C. Phillips, Gen. Rel. Grav. 17 (1985) 1029 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Chamblin and A. Karch, Hawking and Page on the brane, Phys. Rev. D 72 (2005) 066011 [hep-th/0412017] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. V.E. Hubeny, D. Marolf, M. Rangamani, Hawking radiation from AdS black holes, ar**v:0911.4144 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumi Kashiyama.

Additional information

Ar**v ePrint: 0910.5376

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashiyama, K., Tanahashi, N., Flachi, A. et al. Quantum back reaction to asymptotically AdS black holes. J. High Energ. Phys. 2010, 99 (2010). https://doi.org/10.1007/JHEP01(2010)099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2010)099

Keywords

Navigation