Log in

Diagnostic techniques for detection of phytoplasma diseases: past and present

  • Review
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Phytoplasmas are intracellular plant pathogens originated from a single lineage derived from Gram-positive bacteria and belong to the class Mollicutes. Phytoplasmas are associated with important diseases in hundreds of economic plant species worldwide. They are also prevalent in natural forest ecosystems and wild plant species. Phytoplasmas are recalcitrant to cultivation and are often difficult to detect and identify due to their erratic distribution, low concentration, seasonal fluctuation and enzyme-inhibitory plant poly-saccharide and polyphenolic compounds especially in woody perennial plant hosts. Rapid, sensitive, accurate and early diagnosis of phytoplasma diseases is indispensable to reduce their economical impact. Several serological and molecular techniques have been developed for accurate and sensitive detection of phytoplasmas in both host plants and insect vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams AN, Davies DL & Kirby MJ, 2001. Virus and phyto-plasma detection in fruit trees. Outlook Agric 30, 45–54.

    Article  Google Scholar 

  • Ahrens U & Seemüller RE, 1992. Detection of DNA of plant pathogenic mycoplasma-like organisms by a polymerase chain reaction that amplifies a sequence of the 16S rRNA gene. Phytopathology 82, 828–832.

    Article  CAS  Google Scholar 

  • Acikgoz S, 1989. Tuber, graft and dodder transmission of potato disease caused by mycoplasmalike organisms (MLO) in Erzurum region. J Turkish Phytopathol 18, 31–38.

    Google Scholar 

  • Andersen MT, Beever RE, Gilman AC, Liefting LW, Balmori E, Beck DL, Sutherland PW, Bryan GT, Gardner RC & Forster RLS, 1998. Detection of phormium yellow leaf phytoplasma in New Zealand flax (Phormium tenax) using nested PCRs. Plant Pathol 47, 188–196.

    Article  CAS  Google Scholar 

  • Angelini E, Negrisolo E, Clair D, Borgo M & Boudon-Padieu E, 2003. Phylogenetic relationships among Flavescence dorée strains and related phytoplasmas determined by hetero-duplex mobility assay and sequence of ribosomal and nonribosomal DNA. Plant Pathol 52, 663–672.

    Article  CAS  Google Scholar 

  • Bai X, Zhang J, Ewing A, Miller SA, Radek AJ, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW & Hogenhout SA, 2006. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 188, 3682–3696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekele B, Hodgetts J, Tomlinson J, Boonham N, Nikolic P, Swarbrick P & Dickinson M, 2011. Use of a real-time LAMP isothermal assay for detecting 16SrII and XII phytoplasmas in fruit and weeds of the Ethiopian Rift Valley. Plant Pathol 60, 345–355.

    Article  CAS  Google Scholar 

  • Berger J, Dalla Via J & Baric S, 2009. Development of a TaqMan allelic discrimination assay for the distinction of two major subtypes of the grapevine yellows phytoplasma Bois noir. Eur J Plant Pathol 124, 521–526.

    Article  Google Scholar 

  • Bertaccini A, Davis RE, Lee I-M, Cont M, Dally EL & Douglas SM, 1990. Detection of chrysanthemum yellows myco-plasmalike organism by dot hybridization and Southern blot analysis. Plant Dis 74, 40–43.

    Article  Google Scholar 

  • Bertaccini A & Martini M, 1999. Ribosomal and nonribo-somal primers for sensitive detection and identification of phytoplasmas. Petria 9, 89–92.

    Google Scholar 

  • Bonnet F, Saillard C, Kollar A, Seemüller E & Bove JM, 1990. Detection and differentiation of the mycoplasmalike organism associated with apple proliferation disease using cloned DNA probes. Mol Plant Microbe In 3, 438–443.

    Article  CAS  Google Scholar 

  • Boonrod K, Munteanu B, Jarausch W & Krczal G, 2012. An immunodominant membrane protein (Imp) of Candidatus Phytoplasma mali binds to plant actin. Mol Plant Microbe In 25, 889–895.

    Article  CAS  Google Scholar 

  • Bosco D & Tedeschi R, 2013. Insect vector transmission assays. Methods Mol Biol 938, 73–85.

    Article  CAS  PubMed  Google Scholar 

  • Braun EJ & Sinclair WA, 1976. Histopathology of phloem necrosis in Ulnus americana. Phytopathology 66, 598–607.

    Article  Google Scholar 

  • Bulgari D, Casati P & Faoro F, 2011. Fluorescence in situ hybridization for phytoplasma and endophytic bacteria localization in plant tissues. J Microbiol Meth 87, 220–223.

    Article  CAS  Google Scholar 

  • Carraro L, Osler R, Loi N & Favali MA, 1991. Transmission characteristics of the clover phyllody agent by dodder. J Phytopathol 133, 15–22.

    Article  Google Scholar 

  • Chang FL, Chen CC & Lin CP, 1995. Monoclonal antibody for the detection and identification of a phytoplasma associated with rice yellow dwarf. Eur J Plant Pathol 101, 511–518.

    Article  Google Scholar 

  • Chapman GB, Buerkle EJ, Barrows EM, Davis RE & Dally EL, 2001. A light and transmission electron microscope study of a black locust tree, Robinia pseudoacacia (Fabaceae), affected by witches broom, and classification of the associated phytoplasma. J Phytopathol 149, 589–597.

    Article  Google Scholar 

  • Chen TA & Jiang XF, 1988. Monoclonal antibodies against the maize bushy stunt agent. Can J Microbiol 34, 6–11.

    Article  Google Scholar 

  • Chen KH, Guo JR, Wu XY, Loi N, Carraro L, Guo YH, Chen YD, Osler R, Pearson R & Chen TA, 1993. Comparison of monoclonal antibodies, DNA probes, and PCR for detection of the grapevine yellow disease agent. Phytopathology 83, 915–922.

    Article  CAS  Google Scholar 

  • Chiykowski LN, 1991. Vector-pathogen host plant relationships of clover phyllody mycoplasmalike orgainsm and the vector leafhopper Paraphlepsius irroratus. Can J Plant Pathol 13, 11–18.

    Article  Google Scholar 

  • Chomczynski P & Rymaszewski M, 2006. Alkaline polyethylene glycol-based method for direct PCR from bacteria eukaryotic tissue samples and whole blood. BioTechniques 40, 454–458.

    Article  CAS  PubMed  Google Scholar 

  • Christensen NM, Axelsen KB, Nicolaisen M & Schultz A, 2005. Phytoplasmas and their interactions with their hosts. Trends Plant Sci 10, 526–535.

    Article  CAS  PubMed  Google Scholar 

  • Christensen NM, Nicolaisen M, Hansen M & Schulz A, 2004. Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Mol Plant Microbe In 17, 1175–1184.

    Article  CAS  Google Scholar 

  • Chuang JG & Lin CP, 2000. Cloning of gyrB and gyrA genes of phytoplasma associated with peanut witches’ broom. Plant Pathol Bull 9, 157–166.

    CAS  Google Scholar 

  • Clark MF, Barbara DJ & Davies DL, 1983. Production and characteristics of antisera to Spiroplasma citri and clover phyllody-associated antigens derived from plants. Ann Appl Biol 103, 251–259.

    Article  Google Scholar 

  • Clark MF, Morton A & Buss SL, 1989. Preparation of myco-plasma immunogens from plants and a comparison of poly-clonal and monoclonal antibodies made against primula yellows MLO-associated antigens. Ann Appl Biol 114, 111–124.

    Article  Google Scholar 

  • Constable FE & Symons RH, 2004. Genetic variability amongst isolates of Australian grapevine phytoplasmas. Austral Plant Pathol 33, 115–119.

    Article  CAS  Google Scholar 

  • Cousin MT, Dafalla G, Demazeau E, Theveu E & Grosclaude J, 1989. In situ detection of MLOs for Solanaceae stolbur and faba bean phyllody by indirect immunofluorescence. J Phytopathol 124, 71–79.

    Article  Google Scholar 

  • Cousin M-T, Roux J, Boudon-Padieu E, Berges R, Seemüller E & Hiruki C, 1998. Use of heteroduplex mobility analysis (HMA) for differentiating phytoplasma isolates causing witches’-broom disease on Populus nigra cv. italica and stolbur or big bud symptoms on tomato. J Phytopathol 146, 97–102.

    Article  Google Scholar 

  • Credi R & Santucci A, 1992. Dodder transmission of myco-plasma-like organisms (MLOs) from grapevines affected by a flavescence dorée-type disease to periwinkle. Phytopathol Mediterr 31, 154–162.

    Google Scholar 

  • Danks C & Boonham N, 2007. Purification method and Kits. Patent WO/2007/104962.

  • Davis RE & Lee I-M, 1993. Cluster-specific polymerase chain reaction amplification of 16 s rDNA sequences for detection and identification of mycoplasma-like organisms. Phytopathology 83, 1008–1011.

    Article  CAS  Google Scholar 

  • Davis MJ, Tsai JH, Cox RL, McDaniel LL & Harrison NA, 1988. Cloning of chromosomal and extrachromosomal DNA of the mycoplasma-like organism that causes maize bushy stunt disease. Mol Plant Microbe In 1, 295–302.

    Article  Google Scholar 

  • Deeley JW, Stevens A & Fox RTV, 1979. Use of Dienes’ stain to detect plant diseases induced by mycoplasma-like organisms. Phytopathology 69, 1169–1171.

    Article  Google Scholar 

  • Delwart EL, Shpaer EG, Mccutchan FE, Louwagie J, Grez M, Rübsamen-Waigmann H & Mullins JI, 1993. Genetic relationships determined by a DNA heteroduplex mobility assay: analysis of HIV-1 env genes. Science 262, 1257–1261.

    Article  CAS  PubMed  Google Scholar 

  • Deng S & Hiruki C, 1991a. Genetic relatedness between two nonculturable mycoplasma-like organisms revealed by nucleic acid hybridization and polymerase chain reaction. Phytopathology 81, 1475–1479.

    Article  Google Scholar 

  • Deng S & Hiruki C, 1991b. Amplification of 16S rRNA genes from culturable and non culturable mollicutes. J Microbiol Meth 14, 53–61.

    Article  CAS  Google Scholar 

  • Dickinson M 2010. Mobile units of DNA in phytoplasma genomes. Mol Microbiol 77, 1351–1353.

    Article  CAS  PubMed  Google Scholar 

  • Dienes L, Ropes MW, Madoff WE, Smith S & Bauer W, 1948. The role of pleuropneumonia-like organisms in genitourinary and joint diseases. New Engl J Med 238, 509–515.

    Article  CAS  PubMed  Google Scholar 

  • Doi Y, Teranaka M, Yora K & Asuyama H, 1967. Mycoplasma or P.L.T. group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’-broom, aster yellows or paulownia witches’-broom. Ann Phytopathol Soc Japan 33, 259–266.

    Article  Google Scholar 

  • Firrao G, Gobbi E & Loci R, 1993. Use of polymerase chain reaction to produce oligonucleotide probes for myco-plasma-like organisms. Phytopathology 83: 602–606.

    Article  CAS  Google Scholar 

  • Firrao G, Gibb K & Streten C, 2005. Short taxonomic guide to the genus ‘Candidatus Phytoplasma’. J Plant Pathol 87, 249–263.

    Google Scholar 

  • Galetto L & Marzachí C, 2010. Real-time PCR diagnosis and quantification of phytoplasmas. In: Weintraub, PG & Jones, P (Eds.) 2010: Phytoplasmas genomes, plant hosts and vectors. CABI Publishers, USA. 1–19.

    Google Scholar 

  • Galetto L, Fletcher J, Bosco D, Turina M, Wayadande A & Marzachí C, 2008. Characterization of putative membrane protein genes of the “Candidatus Phytoplasma asteris”, chrysanthemum yellows isolate. Can J Microbiol 54, 341–351.

    Article  CAS  PubMed  Google Scholar 

  • Galetto L, Bosco D, Balestrini R, Genre A, Fletcher J & Marzachí C, 2011. The major antigenic membrane protein of Candidatus Phytoplasma asteris selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS One 6, e22571.

  • Gundersen DE, Lee I-M, Rehner SA, Davis RE & Kingsbury DE, 1994. Phylogeny of mycoplasmalike organisms (phy-toplasmas): a basis for their classification. J Bacteriol 176, 5244–5254.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gundersen DE & Lee I-M, 1996. Ultrasensitive detection of phytoplasma by nested-PCR assays using two universal primer sets. Phytopathol Mediterr 35, 144–151.

    CAS  Google Scholar 

  • Gundersen DE, Lee I-M, Schaff DA, Harrison NA, Chang CJ, Davis RE & Kingsbury DT, 1996. Genomic diversity and differentiation among phytoplasma strains in the 16S rRNA groups I (aster yellows and related phytoplasmas) and III (X-disease and related phytoplasmas). Int J. Syst Bacteriol 46, 64–75.

    Article  CAS  PubMed  Google Scholar 

  • Guo YH, Cheng ZM, Walla JA & Zhang Z, 1998. Diagnosis of X-disease phytoplasma in stone fruits by a monoclonal antibody developed directly from a woody plant. J Envir Hort 16, 33–37.

    Google Scholar 

  • Guozhong T, **** Z, ShuiFang Z, Chengliang Z, Fei L & Wensheng H, 1996. Detection of mycoplasma-like organisms in the infected paulownia by indirect immunofluores-cence microscopy. J For Res 9, 1–6.

    Google Scholar 

  • Haggis GH & Sinha RC, 1978. Scanning electron microscopy of mycoplasma-like organisms after freeze fracture of plant tissues affected with clover phyllody and aster yellows. Phytopathology 68, 677–680.

    Article  Google Scholar 

  • Han S & Cha B, 2002. Genetic differentiation of phytoplasma isolates by DNA heteroduplex mobility assay and single-strand conformation polymorphism analysis. Plant Pathol J 18, 308–312.

    Article  Google Scholar 

  • Harrison NA, Richardson PA & Tsai JH, 1996. PCR assay for detection of the phytoplasma associated with maize bushy stunt disease. Plant Dis 80, 263–269.

    Article  CAS  Google Scholar 

  • Heinrich M, Botti S, Caprara L, Arthofer W, Strommer S, Hanzer V, Katinger H, Bertaccini A & Laimer da Câmara Machado, M. 2001. Improved detection methods for fruit tree phytoplasmas. Plant Mol Biol Rep 19, 169–179.

    Article  CAS  Google Scholar 

  • Hiruki C & Da Rocha A, 1986. Histochemical diagnosis of mycoplasma infections in Catharanthus roseus by means of a fluorescent DNA-binding agent, 4’,6-diamidino-2-pheny-lindole-2HC1 (DAPI). Can J Plant Pathol 8, 185–188.

    Article  CAS  Google Scholar 

  • Hobbs HA, Reddy DVR & Reddy AS, 1987. Detection of a mycoplasma-like organism in peanut plants with witches’ broom using indirect enzyme-linked immunosorbent assay (ELISA). Plant Pathol 36, 164–167.

    Article  Google Scholar 

  • Hodgetts J, Ball T, Boonham N, Mumford R & Dickinson M, 2007. Use of terminal restriction fragment length polymorphism (T-RFLP) for identification of phytoplasmas in plants. Plant Pathol 56, 357–365.

    Article  CAS  Google Scholar 

  • Hodgetts J, Boonham N, Mumford R & Dickinson M, 2009. Panel of 23S rRNA gene-based Real-Time PCR assays for improved universal and group-specific detection of phyto-plasmas. Appl Environ Microbiol 75, 2945–2950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogenhout SA & Šeruga Music M, 2010. Phytoplasma ge-nomics, from sequencing to comparative and functional genomics — what have we learnt? In: Weintraub, PG & Jones, P (Eds.) 2010: Phytoplasmas — Genomes, Plant Hosts and Vectors. Wallingford: CABI. 19–36.

    Google Scholar 

  • Hogenhout SA, Oshima K, Ammar E-D, Kakizawa S, Kingdom HN & Namba S, 2008. Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9, 403–423.

    Article  CAS  PubMed  Google Scholar 

  • Jarausch W, Saillard C, Dosba F & Bové JM, 1994. Differentiation of mycoplasma-like organisms (MLOs) in European fruit trees by PCR using specific primers derived from sequence of a chromosomal fragment of the apple proliferation MLO. Appl Environ Microbiol 60, 2916–2923.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jarausch W, Lansac M, Saillard C, Broquaire JM & Dosba F, 1998. PCR assay for specific detection of European stone fruit yellows phytoplasmas and its use for epidemiological studies in France. Eur J Plant Pathol 104, 17–27.

    Article  Google Scholar 

  • Jarausch W, Lansac M, Portanier C, Davies DL & Decroocq V, 2000. In vitro grafting: a new tool to transmit pome fruit phytoplasmas to non-natural fruit tree hosts. Adv Hortic Sci 14, 32.

    Google Scholar 

  • Jiang YP, Chen TA, Chiykowski LN & Sinha RC, 1989. Production of monoclonal antibodies to peach eastern X-disease agent and their use in disease detection. Can J Plant Pathol 11, 325–331.

    Article  Google Scholar 

  • Jomantiene R, Davis RE, Maas J & Dally EL, 1998. Classification of new phytoplasmas associated with diseases of strawberry in Florida, based on analysis of 16S rRNA and ribosomal protein gene operon sequences. Int J Syst Bacteriol 48, 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Jomantiene R & Davis RE, 2006. Clusters of diverse genes existing as multiple, sequence variable mosaics in a phy-toplasma genome. FEMS Microbiol Lett 255, 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Jomantiene R, Zhao Y & Davis RE, 2007. Sequence-variable mosaics: composites of recurrent transposition characterizing the genomes of phylogenetically diverse phyto-plasmas. DNA Cell Biol 26, 557–564. Erratum 26, 695.

    Article  CAS  PubMed  Google Scholar 

  • Kakizawa S, Oshima K & Namba S, 2006. Diversity and functional importance of phytoplasma membrane proteins. Trends Microbiol 14, 254–256.

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick BC, Stenger DC, Morris TJ & Purcell AH, 1987. Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organism. Science 238, 197–200.

    Article  CAS  PubMed  Google Scholar 

  • Kison H, Schneider B & Seemüller E, 1994. Restriction fragment length polymorphism within the apple proliferation mycoplasma-like organism. J Phytopathol 141, 395–401.

    Article  CAS  Google Scholar 

  • Kube M, Mitrovic J, Duduk B, Rabus R & Seemüller E, 2012. Current view on phytoplasma genomes and encoded metabolism. ScientificWorldJournal. doi:10.1100/2012/185942.

    Google Scholar 

  • Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM, Reinhardt R & Seemüller E, 2008. The linear chromosome of the plant-pathogenic mycoplasma “Candi-datus Phytoplasma mali?”. BMC Genomics 9, 306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuske CR, Kirkpatrick BC & Seemüller E, 1991. Differentiation of virescence MLOs using western aster yellows my-coplasma-like organism chromosomal DNA probes and restriction fragment length polymorphism analysis. J Gen Microbiol 137, 153–159.

    Article  CAS  Google Scholar 

  • Lebsky V, Hernández-González J, Arguello-Astorga G, Cardenas-Conejo Y & Poghosyan, A, 2011. Detection of phytoplasmas in mixed infection with begomoviruses: a case study of tomato and pepper in Mexico. Bull Insectology 64 (Suppl), S55–S56.

    Google Scholar 

  • Lee I-M & Davis RE, 1988. Detection and investigation of genetic relatedness among aster yellows and other myco-plasma-like organisms by using cloned DNA and RNA probes. Mol Plant Microbe In 1, 303–310.

    Article  Google Scholar 

  • Lee I-M & Davis RE, 1992. Mycoplasmas which infect insects and plants. In: Maniloff, J., McElmansey, RN, Finch, LR & Baseman, JB (Eds.) 1992: Mycoplasmas; Molecular Biology and Pathogenesis. American Society for Microbiology, Washington DC. 379–390.

    Google Scholar 

  • Lee I-M, Davis RE, Chen T-A, Chiykowski LN, Fletcher J, Hiruki C & Schaff DA, 1992. A genotype-based system for identification and classification of mycoplasma-like organisms (MLOs) in the aster yellows MLO strain cluster. Phytopathology 82, 977–986.

    Article  CAS  Google Scholar 

  • Lee I-M, Davis RE & Hsu H-T, 1993a. Differentiation of strains in the aster yellows mycoplasma-like organism strain cluster by serological assay with monocolonal antibodies. Plant Dis 77, 815–817.

    Article  Google Scholar 

  • Lee I-M, Hammond RW, Davis RE & Gundersen DE, 1993b. Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasma-like organisms. Phytopathology 83, 834–842.

    Article  CAS  Google Scholar 

  • Lee I-M, Gundersen DE, Hammond RW & Davis RE, 1994. Use of mycoplasma-like organism (MLO) group-specific oligo-nucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host plant. Phytopathology 84, 559–566.

    Article  CAS  Google Scholar 

  • Lee I-M, Bertaccini A, Vibio M & Gundersen DE, 1995. Detection of multiple phytoplasmas in perennial fruit trees with decline symptoms in Italy. Phytopathology 85, 728–735.

    Article  CAS  Google Scholar 

  • Lee I-M, Davis RE & Gundersen-Rindal DE, 2000. Phyto-plasma: phytopathogenic mollicutes. Annu Rev Microbiol 54, 221–255.

    Article  CAS  PubMed  Google Scholar 

  • Lherminier J, Bonfiglioli RG, Daire X, Symons RH & Boudon-Padieu E, 1999. Oligodeoxynucleotides as probes for in situ hybridization with transmission electron microscopy to specifically localize phytoplasma in plant cells. Mol Cell Probe 93, 41–47.

    Article  Google Scholar 

  • Liefting LW, Andersen MT, Beever RE, Gardner RC & Forster RL, 1996. Sequence heterogeneity in the two 16S rRNA genes of Phormium yellow leaf phytoplasma. Appl Environ Microbiol 62, 3133–3139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim PO & Sears BB, 1989. 16S rRNA sequence indicates that plant-pathogenic mycoplasma-like organisms are evolu-tionarily distinct from animal mycoplasmas. J Bacterio 171, 5901–5906.

    CAS  Google Scholar 

  • Lim PO & Sears BB, 1991a. DNA sequence of the ribosomal protein genes rp12 and rps19 from a plant-pathogenic mycoplasma-like organism. FEMS Microbiol Lett 84, 71–74.

    Article  CAS  Google Scholar 

  • Lim PO & Sears BB, 1991b. The genome size of a plant-pathogenic mycoplasma-like organism resembles those of animal mycoplasmas. J Bacteriol 173, 2128–2830.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CP & Chen TA, 1985. Monoclonal antibodies against the aster yellows agent. Science 227, 1233–1235.

    Article  CAS  PubMed  Google Scholar 

  • Loi N, Ermacora P, Chen TA, Carraro L & Osler R, 1998. Monoclonal antibodies for the detection of tagetes witches’ broom agent. J Plant Pathol 80, 171–174.

    Google Scholar 

  • Loi N, Ermacora P, Carraro L, Osler R & Chen TA, 2002. Production of monoclonal antibodies against apple proliferation phytoplasma and their use in serological detection. Eur J Plant Pathol 108, 81–86.

    Article  CAS  Google Scholar 

  • Lorenz KH, Schneide B, Ahrens U & Seemüller E, 1995. Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and non-ribosomal DNA. Phytopathology 85, 771–776.

    Article  CAS  Google Scholar 

  • Malinowski T, Zandarski J, Komorowska B & Zawadzka B, 1996. Application of DAPI staining and PCR amplification of DNA for the identification of pear decline phytoplasma in declining trees in Poland. Phytopathol Polonica 12, 103–110.

    Google Scholar 

  • Marcone C & Ragozzino A, 1996. Comparative ultrastructural studies on genetically differrent phytoplasmas using scanning electron microscopy. Petria 6, 125–136.

    Google Scholar 

  • Marcone C, Ragozzino A & Seemüller E, 1997. Dodder transmission of alder yellows phytoplasma to the experimental host Catharanthus roseus (periwinkle). Eur J Forest Pathol 27, 347–350.

    Article  Google Scholar 

  • Marcone C, Hergenhahn F, Ragozzino A & Seemüller E, 1999. Dodder transmission of pear decline, European stone fruit yellows, Rubus stunt, Picris echioides yellows and cotton phyllody phytoplasmas to periwinkle. J Phytopathol 147, 187–192.

    Article  CAS  Google Scholar 

  • Marcone C, Lee I-M, Davis RE, Ragozzino A & Seemüller E, 2000. Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. Int J Syst Evol Microbiol 50, 1703–1713.

    Article  CAS  PubMed  Google Scholar 

  • Marinho VLA, Fabre S & Dollet M, 2008. Genetic variability among isolates of Coconut lethal yellowing phytoplasmas determined by Heteroduplex Mobility Assay (HMA). Trop Plant Pathol 33, 377–380.

    Article  Google Scholar 

  • Milne RG, Ramasso GE, Lenzi R, Masenga V, Sarindu S & Clark MF, 1995. Pre- and Post-embedding immunogold labeling and electron microscopy in plant host tissues of three antigenically unrelated MLOs: primula yellows, tomato big bud and bermudagrass whiteleaf. Eur J Plant Pathol 101, 57–67.

    Article  Google Scholar 

  • Musetti R, Favali MA, Carraro L & Osler R, 1992. An attempt to differentiate by microscopic methods two plant myco-plasma-like organisms. Cytobios 72, 71–82.

    Google Scholar 

  • Musetti R, Favali MA & Pressacco L, 2000. Histopathology and polyphenol content in plants infected by phyto-plasmas. Cytobios 102, 133–147.

    CAS  PubMed  Google Scholar 

  • Musetti R, Loi N, Carraro L & Ermacora P, 2002. Application of immunoelectron microscopy techniques in the diagnosis of phytoplasma diseases. Microsc Res Tech 56, 462–464.

    Article  PubMed  Google Scholar 

  • Music MS, Krajacic M & Skoric D, 2008. The use of SSCP analysis in the assessment of phytoplasma gene variability. J Microbiol Meth 73, 69–72.

    Article  CAS  Google Scholar 

  • Nakashima K, Kato S, Iwanami S & Murata N, 1991. Cloning and detection of chromosomal and extrachromosomal DNA from mycoplasma-like organisms that cause yellow dwarf disease of rice. Appl Environ Microbiol 57, 3570–3575.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Namba S, Kato S, Iwanami S, Oyaizu H, Shiozawa H & Tsuchizaki T, 1993. Detection and differentiation of plant-pathogenic mycoplasma-like organisms using polymerase chain reaction. Phytopathology 83, 786–791.

    Article  CAS  Google Scholar 

  • Nejat N & Vadamalai G, 2010. Phytoplasma detection in coconut palm and other tropical crops. Plant Pathol J 9 101–110.

    Google Scholar 

  • Nejat N, Vadamalai G, Davis RE, Harrison NA, Sijam K, Dickinson M, Abdullah SNA & Zhao Y, 2013. ‘Candidatus Phytoplasma malaysianum’, a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catha-ranthus roseus). Int J Syst Evol Microbiol 63, 540–548.

    Article  CAS  PubMed  Google Scholar 

  • Neimark HC & Kirkpatrick BC, 1993. Isolation and characterization of full-length chromosomes from non-culturable plant-pathogenic mycoplasma-like organisms. Mol Microbiol 7, 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N & Hase T, 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28, E63.

  • Oberhänsli T, Altenbach D & Bitterlin W, 2011. Development of a duplex TaqMan real-time PCR for the general detection of phytoplasmas and 18S rRNA host genes in fruit trees and other plants. Bull Insectology 64, S37–S38.

    Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K & Sekiya T, 1989. Detection of polymorphism of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86, 2766–2770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborn AM, Moore ElR & Timmis KN, 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2, 39–50.

    Article  CAS  PubMed  Google Scholar 

  • Oshima K, Kakizawa S, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Arashida R, Nakata D, Miyata S, Ugaki M & Namba S, 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genet 36, 27–29.

    Article  CAS  PubMed  Google Scholar 

  • Palmano S & Firrao G, 2000. Diversity of phytoplasmas isolated from insects, determined by a DNA hetero-duplex mobility assay and a length polymorphism of the 16S-23S rDNA spacer region analysis. J Appl Microbiol 89, 744–50.

    Article  CAS  PubMed  Google Scholar 

  • Pastore M, Piccirillo P, Simeone AM, Tian J, Paltrinieri S & Bertaccini A, 2001. Transmission by patch grafting of ESFY phytoplasma to apricot (Prunus armeniaca L.) and Japanese plum (Prunus salicina Lindl). Acta Hortic 550, 339–344.

    Article  CAS  Google Scholar 

  • Poghosyan AV, Lebsky VK, Arce-Montoya M & Landa L, 2004. Possible phytoplasma disease in papaya (Carica papaya L.) from Baja California Sur: diagnosis by scanning electron microscopy. J Phytopathol 152, 376–380.

    Article  Google Scholar 

  • Razin S, Yogev D & Naot Y, 1998. Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol Biol Rev 62, 1094–1156.

    CAS  Google Scholar 

  • Razin S, 2007. Molecular biology and genomics of Mollicutes. Bull Insectology 60, 101–103.

    Google Scholar 

  • Saeed E, Rage P & Cousin MT, 1992. Determination of the antigenic protein size associated with faba bean phyllody MLO by using (SDS-PAGE) electrophoresis and immuno-transfer. J Phytopathol 136, 1–8.

    Article  CAS  Google Scholar 

  • Schneider B, Ahrens U, Kirkpatrick BC & Seemüller E, 1993. Classification of plant pathogenic mycoplasma-like organisms using restriction-site analysis of PCR amplified 16 s rDNA. J Gen Appl Microbiol 139, 19–527.

    Google Scholar 

  • Schneider B & Seemüller E, 1994. Studies on the taxonomic relationships of mycoplasma-like organisms by Southern blot analysis. J Phytopathol 141, 173–185.

    Article  Google Scholar 

  • Schneider B & Seemüller E, 2009. Strain differentiation of Candidatus Phytoplasma mali by SSCP- and sequence analysis of the HFLB gene. J Plant Pathol 91, 103–112.

    CAS  Google Scholar 

  • Schneider B, Gibb KS & Seemüller E, 1997. Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology 143, 3381–3389.

    Article  CAS  PubMed  Google Scholar 

  • Schuiling M & Forstel-Neuhaus A, 1992. The use of the fluorochrome DAPI in the diagnosis of lethal disease of coconut palm (Cocos nucifera) in Tanzania. Z Pflanzenk Pflanzensch 99, 614–616.

    CAS  Google Scholar 

  • Seddas A, Meignoz R, Daire X & Boudon-Padieu E, 1996. Generation and characterization of monoclonal antibodies to flavescence dorée phytoplasma: serological relationships and differences in electroblot immunoassay profiles of flavescence dorée and elm yellows phytoplasmas. Eur J Plant Pathol 102, 757–764.

    Article  Google Scholar 

  • Seemüller E, 1976. Investigation to demonstrate myco-plasma-like organism in diseased plants by fluorescence microscopy. Acta Hortic 67, 109–112.

    Article  Google Scholar 

  • Seemüller E, Schneider B, Mäurer R, Ahrens U, Daire X, Kison H, Lorenz K-H, Firrao G, Avinent L, Sears BB & Stackebrandt E, 1994. Phylogenetic classification of phy-topathogenic Mollicutes by sequence analysis of 16S ribo-somal DNA. Int J Syst Bacteriol 44, 440–446.

    Article  PubMed  Google Scholar 

  • Seemüller E & Kirkpatrick BC, 1996. Detection of phyto-plasma infections in plants. In: Tully, JG & Razin, S (Eds.) 1996: Molecular and Diagnostic Procedures in Mycoplas-mology, Vol. II. Academic Press, San Diego, CA. 291–311.

    Google Scholar 

  • Shiomi T & Sugiura M, 1984. Grou** of mycoplasma-like organisms transmitted by the leafhopper vector, Macrosteles orientalis Virvaste, based on host range. Ann Phytopathol Soc Japan 50, 49–57.

    Google Scholar 

  • Shen WC & Lin CP, 1993. Production of monoclonal antibodies against a mycoplasmalike organism associated with sweetpotato witches’ broom. Phytopathology 83, 671–675.

    Article  Google Scholar 

  • Sinclair WA, Griffiths HM, Davis RE & Lee I-M, 1992. Detection of ash yellows mycoplasmalike organisms in different tree organs and in chemically preserved specimens by a DNA probe vs. DAPI. Plant Dis 76, 154–158.

    Article  CAS  Google Scholar 

  • Sinha RC & Benhamou N, 1983. Detection of mycoplasmalike organism antigens from aster yellows diseased plants by two serological procedures. Phytopathology 73, 1199–1202.

    Article  Google Scholar 

  • Smart CD, Schneider B, Blomquist L, Guerra J, Harrison NA, Ahrens U, Lorenz K-H, Seemüller E & Kirkpatrick BC, 1996. Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. Appl Environ Microbiol 62, 2988–2993.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara K, Himeno M, Keima T, Kitazawa Y, Maejima K, Oshima K & Namba S, 2012. Rapid and reliable detection of phytoplasma by loop-mediated isothermal amplification targeting a housekee** gene. J Gen Plant Pathol Published Online. DOI 10.1007/s10327-012-0403-9.

  • Thomas S & Balasundaran M, 1998. In situ detection of phytoplasma in spike-disease-affected sandal using DAPI stain. Curr Sci 74, 989–993.

    Google Scholar 

  • Tomlinson JA, Boonham N & Dickinson M, 2010. Development and evaluation of a one-hour DNA extraction and loop-mediated isothermal amplification assay for rapid detection of phytoplasmas. Plant Pathol 59, 465–471.

    Article  CAS  Google Scholar 

  • Tran-Nguyen LTT, Kube M, Schneider B, Reinhardt R & Gibb KS, 2008. Comparative genome analysis of “Candi-datus phytoplasma australiense“ (subgroup tuf-Australia I;rp-A) and “Ca. Phytoplasma asteris“ strains OY-M and AY-WB. J Bacteriol 190, 3979–3991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upchurch DA, Shankarappa R & Mullins JI, 2000. Position and degree of mismatches and the mobility of DNA heteroduplexes. Nucleic Acids Res 28, E69–e69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K & Hiruki C, 1999. Rapid detection of a single-basepair mutation in phytoplasmal conserved genes by DNA heteroduplex mobility assay (HMA). Proc Japan Acad 75B, 259–262.

    Article  CAS  Google Scholar 

  • Wang K & Hiruki C, 2001. Use of heteroduplex mobility assay for identification and differentiation of phytoplasmas in the aster yellows group and the clover proliferation group. Phytopathology 91, 546–552.

    Article  CAS  PubMed  Google Scholar 

  • Wang K & Hiruki C, 2005. Distinctions between phyto-plasmas at the subgroup level detected by heteroduplex mobility assay. Plant Pathol. 54, 625–633.

    Article  CAS  Google Scholar 

  • Ward LI & Harper SJ, 2012. Loop-Mediated Isothermal Amplification for the Detection of Plant Pathogens. In: Sucher NJ, Hennell JR & Carles MC (Eds.) 2012. Plant DNA Fingerprinting and Barcoding: Methods and Protocols. 161–170.

  • Webb DR, Bonfiglioli RG, Carraro L, Osler R & Symons RH, 1999. Oligonucleotides as hybridization probes to localize phytoplasmas in host plants and insect vectors. Phytopathology 89, 894–901.

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Kakizawa S, Jung HY, Suzuki S, Tanaka M, Nishigawa H, Miyata S, Oshima K, Uqaki M, Hibi T & Namba S, 2004. An antibody against the SecA membrane protein of one phytoplasma reacts with those of phylo-genetically different phytoplasmas. Phytopathology 94, 683–686.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Wei W, Lee I-M, Shao J, Suo X & Davis RE, 2009. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol 59, 2582–2593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Q & Hiruki C, 1994. Genetic differentiation of phyto-plasma isolates determined by a DNA heteroduplex mobility assay. Proc Japan Acad 70B, 127–131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naghmeh Nejat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejat, N., Vadamalai, G. Diagnostic techniques for detection of phytoplasma diseases: past and present. J Plant Dis Prot 120, 16–25 (2013). https://doi.org/10.1007/BF03356449

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356449

Key words

Navigation