Log in

Evaluation of ground water quality using multiple linear regression and structural equation modeling

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

A methodology for characterizing ground water quality of watersheds using hydrochemical data that mingle multiple linear regression and structural equation modeling is presented. The aim of this work is to analyze hydrochemical data in order to explore the compositional of phreatic aquifer groundwater samples and the origin of water mineralization, using mathematical method and modeling, in Maknassy Basin, central Tunisia). Principal component analysis is used to determine the sources of variation between parameters. These components show that the variations within the dataset are related to variation in sulfuric acid and bicarbonate, sodium and cloride, calcium and magnesium which are derived from water-rock interaction. Thus, an equation is explored for the sampled ground water. Using Amos software, the structural equation modeling allows, to test in simultaneous analysis the entire system of variables (sodium, magnesium, sulfat, bicarbonate, cloride, calcium), in order to determine the extent to which it is consistent with the data. For this purpose, it should investigate simultaneously the interactions between the different components of ground water and their relationship with total dissolved solids. The integrated result provides a method to characterize ground water quality using statistical analyses and modeling of hydrochemical data in Maknassy basin to explain the ground water chemistry origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, S.; Titus R.; Pietersen, K.; Tredoux, G.; Harris, C., (2001). Hydrochemical characteristics of aquifers near Sutherland in the western Karoo, South Africa. J. Hydrol., 241, 91–103 (13 pages).

    Article  CAS  Google Scholar 

  • Alberto, W. D.; Del Pilar, D. M.; Valeria, A. M.; Fabiana, P. S.; Cecilia, H. A.; De los Angles, B. M., (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality, A case study: Suquia River basin (Cordoba-Argentina). Water Res., 35, 2881–2894 (14 pages).

    Article  CAS  Google Scholar 

  • Andre, L.; Franceschi, M.; Pouchan, P.; Atteia, O., (2005). Using geochemical data and modeling to enhance the understanding of ground water flow in a regional deep aquifer, Aquitaine Basin, south-west of France. J. Hydrol.,305, 40–62 (23 pages).

    Article  CAS  Google Scholar 

  • APHA, AWWA, WEF, (1985). Standard methods for the examination of water and wastewater (18th. Ed.). American Water Works Association, Washington DC. 373–412.

    Google Scholar 

  • Arbuckle, J. L., (2006). Amos (Version 7.0). Computer program. Chicago, SPSS.

  • Back, W., (1966). Hydrochemical facies and ground water flow patterns in the northern part of the Atlantic Coastal Plain; U.S. Geological survey professional paper 498-A, 42.

  • Bennetts, D. A.; Webb, J. A.; Stone, D. J. M.; Hill, D. M., (2006). Understanding the salinisation process for ground water in an area of south-eastern Australia, using hydrochemical and isotopic evidence. J. Hydrol., 323 (1-4), 178–192 (15 pages).

    Article  Google Scholar 

  • Bentler, P. M., (1988). Causal modeling via structural equation system. Handbook of multivariate experimental psychology. 2nd. Ed., New York, Plenum, 317–335.

    Chapter  Google Scholar 

  • Bentler, P. M., (1990). Comparative fit indexes in structural models. Psychol. Bull., 107 (2), 238–246 (9 pages).

    Article  CAS  Google Scholar 

  • Bentler, P. M., (1992). On the fit of models to covariances and methodology to the bulletin. Psychol. Bull., 112 (3), 400–404 (5 pages).

    Article  CAS  Google Scholar 

  • Bernstein, I. H., (1988). Applied multivariate analysis. New York, Springer.

    Book  Google Scholar 

  • Bollen, K. A., (1986). Sample size and Bentler and Bonett’s non normed fit index. Psychometrika, 51(3), 375–377 (3 pages).

    Article  Google Scholar 

  • Bollen, K. A., (1989). Structural equation with latent variables. New York, Wiley.

    Google Scholar 

  • Bring, J., (1994). How to standardize regression coefficients. Am. Stat., 48 (3), 209–213 (5 pages).

    Google Scholar 

  • Browne, M. W.; Cudeck, R., (1993). Alternative ways of assessing model fit. Sociologic. Meth. Res., 21(2), 230–258 (29 pages).

    Article  Google Scholar 

  • Byrne, B. M., (2001). Structural equation modeling with AMOS. (Eds) Lawrence Erlbaum associates, publishers, Mahwah, New Jersey, USA.

    Google Scholar 

  • Chenini, I.; Ben Mammou, A.; Turki, M. M.; Mercier, E., (2008). Ground water resources in Maknassy Basin (central Tunisia): Hydrological data analysis and water budgeting. Geosc. J., 12 (4), 385–399 (15 pages).

    Article  CAS  Google Scholar 

  • Cronin, A. A.; Barth, J. A. C.; Elliot, T.; Kalin, R. M., (2005). Recharge velocity and geochemical evolution for the Permo-Triassic Sherwood sandstone, Northern Ireland. J. Hydrol., 315 (1-4), 308–324 (17 pages).

    Article  Google Scholar 

  • Doran, J. W.; Parkin, T. B., (1996). Quantitative indicators of soil quality: a minimum data set. In Doran, J. W.; Jones, A. J. Eds. Methods for assessing soil quality. Madison, WI: SSSA, Special publication, 49, 25–37.

    Google Scholar 

  • Fan, X.; Thompson, B.; Wang, L., (1999). Effects of sample size, estimation methods and model specification on structural equation modeling fit indexes. S. E. M. Multidisci. J., 6 (1), 56–83 (28 pages).

    Google Scholar 

  • Fronell, C., (1982). A second generation of multivariate analysis. Methods, New York, Praeger Vol. 1.

    Google Scholar 

  • Ghasemi, J.; Saaidpour, S., (2007). Quantitative structure- property relationship study of n-octanol-water partition coefficients of some of diverse drugs using multiple linear regression. Anal. Chim. Acta, 604 (2), 99–106 (8 pages).

    Article  CAS  Google Scholar 

  • Grassi, S.; Cortecci, G., (2005). Hydrogeology and geochemistry of the multilayered confined aquifer of the Pisa plain (Tuscany — central Italy). Appl. Geochem., 20 (1), 41–54 (14 pages).

    Article  CAS  Google Scholar 

  • Green, P.; Carroll, J., (1996). Mathematical tools for applied multivariate analysis, Student Ed., Academic Press, New York, USA.

    Google Scholar 

  • Hair, J. F.; Anderson, R. E.; Tatham, R. L.; Black, W. C., (1998). Multivariate data analysis with reading, 5th Ed. Upper Saddle River (NJ: Prentice-Hall).

    Google Scholar 

  • Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J. M.; Fernandez, L., (2000). Temporal evolution of ground water composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res., 34 (3), 807–816 (10 pages).

    Article  CAS  Google Scholar 

  • Hidalgo, M. C.; Cruz-Sanjulian, J., (2001). Ground water composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza Basin, southern Spain). Appl. Geochem., 16 (7-8), 745–758 (14 pages).

    Article  CAS  Google Scholar 

  • Hu, L. T.; Bentler, P. M., (1999). Cutoff criteria for indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Eq. Modl. Multidisci. J., 6 (1), 1–55 (55 pages).

    Article  Google Scholar 

  • Jolliffe, I. T., (2002). Principal component analysis, Springer-Verlag, 520.

  • Joreskog, K. G.; Sorbom, D., (1993). LISREL8: Structural equation modeling with the SIMPLIS command language: Scientific software international, Chicago.

  • Kline, R. B., (2005). Principles and practice of structural equation modeling. New York, Guilford Press.

    Google Scholar 

  • Liedholz, T.; Schafmeister, M. T., (1998). Map** of hydrochemical ground water regimes by means of multivariatestatistical analyses. In Proceedings of the fourth annual conference of the International Association for Mathematical Geology, October 5–9, Ischia, Italay, Ed. A. Buccianti, G. Nardi and R. Potenza, Kingston, Ontario, Canada: International Association for Mathematical Geology, 298–303.

    Google Scholar 

  • Locsey, K. L.; Cox, M. E., (2003). Statistical and hydrochemical methods to compare basalt and basement rock-hosted ground waters: Atherton Tablelands, north-eastern Australia. Environ. Geol., 43, 698–713 (16 pages).

    CAS  Google Scholar 

  • Lopez-Chicano, M.; Bouamama Vallejos, M. A.; Pulido, B. A., (2001). Factors which determine the hydrogeochemical behaviour of karstic springs: A case study from the Betic Cordilleras, Spain. Appl. Geochem., 16 (9-10), 1179–1192 (14 pages).

    Article  CAS  Google Scholar 

  • Mulaik, S. A.; James, L. R.; Vanaltine, J.; Bennett, N.; Lind, S.; Stilwell, C. D., (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychol. Bull., 105 (3), 430–445 (16 pages).

    Article  Google Scholar 

  • Muller, J.; Kylandern, M.; Martinez-Cortizas, A.; Wust, R. A. J.; Weiss, D., Blake, K.; Coles, B.; Garcia-Sanchez, R., (2008). The use of principle component analyses in characterising trace and major elemental distribution in a 55 kyr peat deposit in tropical Australia: Implications to paleoclimate. Geochim. Cosmochim. Ac., 72 (2), 449–463 (15 pages).

    Article  CAS  Google Scholar 

  • Pulido-Leboeuf, P.; Pulido-Bosch, A.; Calvache, M. L.; Vallejos, A.; Andreu, J. M., (2003). Strontium, SO4 2″/Cl and Mg2+/Ca2+ ratios as tracers for the evolution of seawater into coastal aquifers: The example of Castell de Ferro aquifer (SE Spain). C. R. Geosci., 335 (14), 1039–1048 (10 pages).

    Article  CAS  Google Scholar 

  • Qian, G.; Gabor, G.; Gupta, R. P., (1994). Principal components selection by the criterion of the minimum mean difference of complexity. J. Multivariate Anal., 49 (1), 55–75 (21 pages).

    Article  Google Scholar 

  • Reeve, A. S.; Siegel, D. I.; Glaser, P. H., (1996). Geochemical controls on peatland pore water from the Hudson Bay Lowland: A multivariate statistical approach. J. Hydrol., 181 (1-4), 285–304 (20 pages).

    Article  CAS  Google Scholar 

  • Seyhan, E.; van-de-Griend, A. A.; Engelen, G. B., (1985). Multivariate analysis and interpretation of the hydrochemistry of a dolomitic reef aquifer, northern Italy. Water Resour. Res., 21 (7), 1010–1024 (15 pages).

    Article  CAS  Google Scholar 

  • Shane, S.; Jerzy, J., (2003). Hydrochemistry and isotopic composition of Na—HCO3-rich ground waters from the Ballimore Region, Central New South Wales, Australia. Chem. Geol., 211(1–2), 111–134 (24 pages).

    Google Scholar 

  • Singh, K. P.; Malik, A.; Singh, V. K.; Mohan, D.; Sinha, S., (2005). Chemometric analysis of ground water quality data of alluvial aquifer of Gangetic plain, North India. Anal. Chim. Acta., 550(1–2), 82–91 (10 pages).

    Article  CAS  Google Scholar 

  • Suk, H.; Lee, K. K., (1999). Characterization of a ground water hydrochemical system through multivariate analysis: Clustering into ground water zones. Ground Water, 37 (3), 358–366 (9 pages).

    Article  CAS  Google Scholar 

  • Tucker, L. K.; Lewis, C., (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38 (1), 1–10 (9 pages).

    Article  Google Scholar 

  • Usunoff, E. J.; Guzman-Guzman, A., (1989). Multivariate analysis in hydrochemistry: An example of the use of factor and correspondence analysis. Ground Water, 27 (1), 27–34 (8 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Chenini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chenini, I., Khemiri, S. Evaluation of ground water quality using multiple linear regression and structural equation modeling. Int. J. Environ. Sci. Technol. 6, 509–519 (2009). https://doi.org/10.1007/BF03326090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326090

Keywords

Navigation