Log in

Electronic transport properties of Ni-doped CoSb3 prepared by encapsulated induction melting

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ni-doped CoSb3 skutterudites were prepared by encapsulated induction melting and their thermoelectric and electronic transport properties were investigated. The negative signs of Seebeck and Hal coefficients for all Ni-doped specimens revealed that Ni atoms successfully acted as n-type dopants by substituting Co atoms. The carrier concentration increased as the Ni do** content increased, and the Ni dopants could generate excess electrons. However, the carrier mobility decreased as the do** content increased, which indicates that the electron mean free path was reduced by the impurity scattering. The Seebeck coefficient and the electrical resistivity decreased as the carrier concentration increased, as the increase in carrier concentration by do** overcame the decrease in the carrier mobility by impurity scattering. The Seebeck coefficient showed a negative value at all temperatures examined and increased as the temperature increased. The temperature dependence of electrical resistivity suggested that Co1−xNixSb3 is a highly degenerate semiconducting material. Thermal conductivity was considerably reduced by Ni do**, and the lattice contribution was dominant in the Ni-doped CoSb3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Caillat, A. Borshchevsky, and J.-P. Fleurial, J. Appl. Phys. 80, 4442 (1996).

    Article  ADS  CAS  Google Scholar 

  2. G. A. Slack and V. G. Tsoukala, J. Appl. Phys. 76, 1665 (1994).

    Article  ADS  CAS  Google Scholar 

  3. I.-H. Kim, G.-S. Choi, M.-G. Han, J.-S. Kim, J.-I. Lee, S.-C. Ur, T.-W. Hong, Y.-G. Lee, and S.-L. Ryu, Mater. Sci. Forum 449, 917 (2004).

    Article  Google Scholar 

  4. G. A. Slack, CRC Handbook of Thermoelectrics (ed. D. M. Rowe), p. 407, CRC Press (1995).

  5. Y. Kawaharada, K. Kurosaki, M. Uno, and S. Yamanaka, J. Alloys Comp. 375, 193 (2001).

    Article  Google Scholar 

  6. J. W. Sharp, E. C. Jones, R. K. Williams, P. H. Martin, and B. C. Sales, J. Appl. Phys. 78, 1013 (1995).

    Article  ADS  CAS  Google Scholar 

  7. L. D. Dudkin and N. K. Abrikosov, Sov. J. Inorg. Chem. 2, 212 (1957).

    CAS  Google Scholar 

  8. B. N. Zobrina and L. D. Dudkin, Sov. Phys. Sol. Stat. 1, 1668 (1960).

    Google Scholar 

  9. K. T. Wojciechowski, J. Tobola, and J. Leszczynski J. Alloys Comp. 361, 19 (2003).

    Article  CAS  Google Scholar 

  10. K. Matsubara, T. Sakakibara, Y. Notohara, H. Anno, H. Shimuzu, and T. Koyanagi, Proc. 15th Intl. Conf. Thermoelectrics, p. 96 (1996).

  11. H. Anno, H. Tashiro, Y. Notohara, T. Sakakibara, K. Hatada, K. Motoya, H. Shimizu, and K. Matsubara, Proc. 16th Intl. Conf. Thermoelectrics, p. 326 (1997).

  12. I.-H. Kim and K.-W. Jang, Met. Mater.-Int. 12, 269 (2006).

    Article  Google Scholar 

  13. S. Katsuyama, M. Watanabe, M. Kuroki, T. Maehata, and M. Ito, J. Appl. Phys. 93, 2758 (2003).

    Article  ADS  CAS  Google Scholar 

  14. D. Mandrus, A. Migliori, T. W. Darling, M. F. Hundley, E. J. Peterson, and J. D. Thompson, Phys. Rev. B 52, 4926 (1995).

    Article  ADS  CAS  Google Scholar 

  15. S.-W. You, J.-Y. Jung, S.-C. Ur and I.-H. Kim, Kor. J. Mater. Res. 16, 312 (2006).

    Article  CAS  Google Scholar 

  16. C. Kittel, Introduction to Solid State Physics, 6th ed., p. 152 John Wiley & Sons, Inc. (1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, IH., Ur, SC. Electronic transport properties of Ni-doped CoSb3 prepared by encapsulated induction melting. Met. Mater. Int. 13, 53–58 (2007). https://doi.org/10.1007/BF03027823

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027823

Keywords

Navigation