Log in

Functional brain map** of actual car-driving using [18F]FDG-PET

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Aims

This study aims at identifying the brain activation during actual car-driving on the road, and at comparing the results to those of previous studies on simulated car-driving.

Methods

Thirty normal volunteers, aged 20 to 56 years, were divided into three subgroups, active driving, passive driving and control groups, for examination by positron emission tomography (PET) and [18F]2-deoxy-2-fluoro-D-glucose (FDG). The active driving subjects (n = 10) drove for 30 minutes on quiet normal roads with a few traffic signals. The passive driving subjects (n = 10) participated as passengers on the front seat. The control subjects (n = 10) remained seated in a lit room with their eyes open. Voxel-basedt-statistics were applied using SPM2 to search brain activation among the subgroups mentioned above.

Results

Significant brain activation was detected during active driving in the primary and secondary visual cortices, primary sensorimotor areas, premotor area, parietal association area, cingulate gyrus, the parahippocampal gyrus as well as in thalamus and cerebellum. The passive driving manifested a similar-looking activation pattern, lacking activations in the premotor area, cingulate and parahippocampal gyri and thalamus. Direct comparison of the active and passive driving conditions revealed activation in the cerebellum.

Conclusion

The result of actual driving looked similar to that of simulated driving, suggesting that visual perception and visuomotor coordination were the main brain functions while driving. In terms of attention and autonomic arousal, however, it seems there was a significant difference between simulated and actual driving possibly due to risk of accidents. Autonomic and emotional aspects of driving should be studied using an actual driving study-design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ott BR, Heindel WC, Whelihan WM, Caron MD, Piatt AL, Noto RB. A single-photon emission computed tomography imaging study of driving impairment in patients with Alzheimer’s disease.Dement Geriatr Cogn Disord 2000; 11(3):153–160.

    Article  PubMed  CAS  Google Scholar 

  2. Calhoun VD, Pekar JJ, Pearlson GD. Alcohol intoxication effects on simulated driving: exploring alcohol-dose effects on brain activation using functional MRI.Neuropsy-chopharmacology 2004; 29(11):2097–2017.

    Article  CAS  Google Scholar 

  3. Tashiro M, Horikawa E, Mochizuki H, Sakurada Y, Kato M, Inokuchi T, et al. Effects of fexofenadine and hydroxyzine on brake reaction time during car-driving with cellular phone use.Hum Psyckopharmacol 2005; 20(7):501–509.

    Article  CAS  Google Scholar 

  4. Walter H, Vetter SC, Grothe J, Wunderlich AP, Hahn S, Spitzer M. The neural correlates of driving.Neuroreport 2001; 12(8):1763–1767.

    Article  PubMed  CAS  Google Scholar 

  5. Calhoun VD, Pekar JJ, McGinty VB, Adali T, Watson TD, Pearlson GD. Different activation dynamics in multiple neural systems during simulated driving.Hum Brain Mapp 2002; 16(3):158–167.

    Article  PubMed  Google Scholar 

  6. Uchiyama Y, Ebe K, Kozato A, Okada T, Sadato N. The neural substrates of driving at a safe distance: a functional MRI study.Neurosci Lett 2003; 352(3):199–202.

    Article  PubMed  CAS  Google Scholar 

  7. Horikawa E, Okamura N, Tashiro M, Sakurada Y, Maruyama M, Arai H, et al. The neural correlates of driving performance identified using positron emission tomography.Brain Cogn 2005; 58(2):166–171.

    Article  PubMed  Google Scholar 

  8. Fujimoto T, Itoh M, Kumano H, Tashiro M, Ido T. Wholebody metabolic map with positron emission tomography of a man after running.Lancet 1996; 348(9022):266.

    Article  PubMed  CAS  Google Scholar 

  9. Tashiro M, Itoh M, Fujimoto T, Fujiwara T, Ota H, Kubota K, et al.18F-FDG PET map** of regional brain activity in runners.J Sports Med Phys Fitness 2001; 41(1):11–17.

    PubMed  CAS  Google Scholar 

  10. Hamacher K, Coenen HH, Stocklin G. Efficient stereo-specific synthesis of no-carrier-added 2-[18F]-fluoro-2- deoxy-D-glucose using aminopolyether supported nucleo- philic substitution.J Nucl Med 1986; 27(2):235–238.

    PubMed  CAS  Google Scholar 

  11. Fujiwara T, Watanuki S, Yamamoto S, Miyake M, Seo S, Itoh M, et al. Performance evaluation of a large axial field-of-view PET scanner: SET-2400W.Ann Nucl Med 1997; 11(4):307–313.

    Article  PubMed  CAS  Google Scholar 

  12. Townsend DW, Wensveen M, Byars LG, Geissbuhler A, Tochon-Danguy HJ, Christin A, et al. A rotating PET scanner using BGO block detectors: design, performance and applications.J Nucl Med 1993; 34(8):1367–1376.

    PubMed  CAS  Google Scholar 

  13. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Comparing functional (PET) images: the assessment of significant change.J Cereb Blood Flow Metab 1991; 11(4):690–699.

    PubMed  CAS  Google Scholar 

  14. Friston KJ, Ashbuner J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ. Spatial registration and normalization of images.Hum Brain Mapp 1995; 2:165–189.

    Article  Google Scholar 

  15. Evans AC, Collins DL, Milner B. An MRI-based stereotactic atlas from 250 young normal subjects.J Soc Neurosci 1992; 18:408.

    Google Scholar 

  16. Friston KJ, Frith CD, Liddle PF, Dolan RJ, Lammertsma AA, Frackowiak RS. The relationship between global and local changes in PET scans.J Cereb Blood Flow Metab 1990; 10(4):458–466.

    PubMed  CAS  Google Scholar 

  17. Talairach J, Tournoux P.Co-planar stereotaxic atlas of the human brain. Stuttgart, Germany; Georg Thieme Verlag, 1988.

    Google Scholar 

  18. Calhoun VD, Carvalho K, Astur R, Pearlson GD. Using virtual reality to study alcohol intoxication effects on the neural correlates of simulated driving.Appl Psychophysiol Biofeedback 2005; 30(3):285–306.

    Article  PubMed  CAS  Google Scholar 

  19. Bente D, Chenchanna P, Scheuler W, Sponagel P. [Drug induced changes of EEG vigilance and optimizing control behavior during car driving (author’s transi)].EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 1978; 9(2):61–73.

    PubMed  CAS  Google Scholar 

  20. Horne JA, Baulk SD. Awareness of sleepiness when driving.Psychophysiology 2004; 41(1):161–165.

    Article  PubMed  Google Scholar 

  21. Kasteleijn-Nolst Trenite DG, Vermeiren R. The impact of subclinical epileptiform discharges on complex tasks and cognition: relevance for aircrew and air traffic controllers.Epilepsy Behav 2005; 6(1):31–34.

    Article  PubMed  Google Scholar 

  22. Feng CM, Narayana S, Lancaster JL, Jerabek PA, Arnow TL, Zhu F, et al. CBF changes during brain activation: fMRI vs. PET.Neuroimage 2004; 22(1):443–446.

    Article  PubMed  Google Scholar 

  23. Baron JC, Lebrun-Grandie P, Collard P, Crouzel C, Mestelan G, Bousser MG. Noninvasive measurement of blood flow, oxygen consumption, and glucose utilization in the same brain regions in man by positron emission tomography: concise communication.J Nucl Med 1982; 23(5):391–399.

    PubMed  CAS  Google Scholar 

  24. Krings T, Schreckenberger M, Rohde V, Spetzger U, Sabri O, Reinges MH, et al. Functional MRI and18F FDG- positron emission tomography for presurgical planning: comparison with electrical cortical stimulation.Acta Neurochir (Wien) 2002; 144(9):889–899; discussion 899.

    Article  CAS  Google Scholar 

  25. de Jong BM, Shipp S, Skidmore B, Frackowiak RS, Zeki S. The cerebral activity related to the visual perception of forward motion in depth.Brain 1994; 117 (Pt 5):1039–1054.

    Article  PubMed  Google Scholar 

  26. Kawashima R, Roland PE, O’Sullivan BT. Functional anatomy of reaching and visuomotor learning: a positron emission tomography study.Cereb Cortex 1995; 5(2):111–122.

    Article  PubMed  CAS  Google Scholar 

  27. Hasselbach-Heitzeg MM, Reuter-Lorenz PA. Egocentric body-centered coordinates modulate visuomotor performance.Neuropsychologia 2002; 40(11):1822–1833.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Tashiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, M., Tashiro, M., Singh, L.N. et al. Functional brain map** of actual car-driving using [18F]FDG-PET. Ann Nucl Med 20, 623–628 (2006). https://doi.org/10.1007/BF02984660

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02984660

Key words

Navigation