Log in

Conversion ofG. hansenii PJK into non-cellulose-producing mutants according to the culture condition

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The conversion of a cellulose-producing cell (Cel +) fromGluconacetobacter hansenii PJK (KCTC 10505 BP) to a non-cellulose-producing cell (Cel ) was investigated by measuring the colony forming unit (CFU). This was achieved in a shaking flask with three slanted baffles, which exerted a strong shear stress. The addition of organic acid, such as glutamic acid and acetic acid, induced the conversion of microbial cells from a wild type toCel mutants in a flask culture. The supplementation of 1% ethanol to the medium containing an organic acid depressed the conversion of the microbial cells toCel mutants in a conventional flask without slanted baffles. The addition of ethanol to the medium containing an organic acid; however, accelerated the conversion of microbial cells in the flask with slanted baffles. TheCel + cells from the agitated culture were not easily converted intoCel , mutants on the additions of organic acid and ethanol to a flask without slanted baffles, but some portion of theCel + cells were converted toCel mutants in a flask with slanted baffles. The conversion ratio ofCel + cells toCel mutants was strongly related to the production of bacterial cellulose independently from the cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park, J. K., Y. H. Park, and J. Y. Jung (2003) Production of bacterial cellulose byGluconacetobacter hansenii isolated from rotten apple.Biotechnol. Bioprocess Eng. 8: 83–88.

    Article  CAS  Google Scholar 

  2. Matthysse, A. G., D. L. Thomas, and A. R. White (1995) Mechanism of cellulose synthesis inAgrobacterium tumefaciens.J. Bacteriol. 177: 1076–1081.

    CAS  Google Scholar 

  3. Brown, A. J. (1886) An acetic acid ferment which forms cellulose.J. Chem. Soc. 49: 432–439.

    CAS  Google Scholar 

  4. Delmer, D. P. and Y. Amor (1995) Cellulose biosynthesis.Plant Cell 7: 987–1000.

    Article  CAS  Google Scholar 

  5. Yamanaka, S., K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y. Nishi, and M. Uryu (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose.J. Mat. Sci. 24: 3141–3145.

    Article  CAS  Google Scholar 

  6. Cannon, R. E. and S. M. Anderson (1991) Biogenesis of bacterial cellulose.Crit. Rev. Microbiol. 17: 435–447.

    Article  CAS  Google Scholar 

  7. Yoshino, T., T. Asakura, and K. Toda (1996) Cellulose production byAcetobacter pasteurianus on silicone membrane.J. Ferment. Bioeng. 81: 32–36.

    Article  CAS  Google Scholar 

  8. Klemm, D., D. Schumann, U. Udhard, and S. Marsch (2001) Bacterial synthesized cellulose: Artificial blood vessels for microsurgery.Prog. Polym. Sci. 26: 1561–1603.

    Article  CAS  Google Scholar 

  9. Vandamme, E. J., S. De Baets, A. Vanbaelen, K. Joris, and P. De Wulf (1998) Improved production of bacterial cellulose and its application potential.Polym. Degrad. Stabil. 59: 93–99.

    Article  CAS  Google Scholar 

  10. Jeong, Y. J. and I. S. Lee (2000) A view of utilizing cellulose produced byAcetobacter bacteria.Food Ind. Nutr. 5: 25–29.

    Google Scholar 

  11. Orodera, M., I. Harashima, K. Toda, and T. Asakura (2002) Silicone rubber membrane bioreactors for bacterial cellulose production.Biotechnol. Bioprocess Eng. 7: 289–294.

    Article  Google Scholar 

  12. Valla, S. and J. Kjosbakken (1981) Cellulose-negative mutants ofAcetobacter xylinum.J. General Microb. 128: 1401–1408.

    Google Scholar 

  13. Park, J. K., J. Y. Jung, and Y. H. Park (2003) Cellulose production byGluconacetobacter hansenii in a medium containing ethanol.Biotechnol. Lett. 25: 2055–2059.

    Article  CAS  Google Scholar 

  14. Schramm, M. and S. Hestrin (1954) Factors affecting production of cellulose at the air/liquid interface of a culture ofAcetobacter xylinum.J. General Microb. 11: 123–129.

    CAS  Google Scholar 

  15. Coucheron, D. H. (1991) AnAcetobacter xylinum insertion sequence element associated with inactivation of cellulose production.J. Bacteriol. 173: 5723–5731.

    CAS  Google Scholar 

  16. Son, H. J., O. M. Lee, Y. G. Kim, Y. K. Park, and S. J. Lee (2000) Characteristics of cellulose production byAcetobacter sp. A9 in static culture.Kor. J. Biotechnol. Bioeng. 15: 573–577.

    Google Scholar 

  17. Toyosaki, H., T. Naritomi, A. Seto, M. Matsuoka, T. Tsuchida, and F. Yoshinaga (1995) Screening of bacterial cellulose-producingAcetobacter strains suitable for agitated culture.Biosci. Biotechnol. Biochem. 59: 1498–1502.

    Article  CAS  Google Scholar 

  18. Pyun, Y. R. (2002) Method of manufacturing microbial cellulose employing soybean processed product.Korea Patent KP2002-0080802.

  19. Lee, H. C. (1999) Medium for producing microbial cellulose and preparation method of microbial cellulose using the same.Korea Patent KB10-0197357.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong Kon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.K., Hyun, S.H. & Jung, J.Y. Conversion ofG. hansenii PJK into non-cellulose-producing mutants according to the culture condition. Biotechnol Bioproc E 9, 383–388 (2004). https://doi.org/10.1007/BF02933062

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02933062

Keywords

Navigation