Log in

Recovery of trichloroethylene removal efficiency through short-term toluene feeding in a biofilter enriched withPseudomonas putida F1

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Trichloroethylene (TCE) is an environmental contaminant provoking genetic mutation and damages to liver and central nerve system even at low concentrations. A practical scheme is reported using toluene as a primary substrate to revitalize the biofilter column for an extended period of TCE degradation. The rate of trichloroethylene (TCE) degradation byPseudomonas putida F1 at 25°C decreased exponentially with time, without toluene feeding to a biofilter column (11 cm I.D.×95 cm height). The rate of decrease was 2.5 times faster at a TCE concentration of 970 μg/L compared to a TCE concentration of 110 μg/L. The TCE itself was not toxic to the cells, but the metabolic intermediates of the TCE degradation were apparently responsible for the decrease in the TCE degradation rate. A short-term (2 h) supply of toluene (2,200 μg/L) at an empty bed residence time (EBRT) of 6.4 min recovered the relative column activity by 43% when the TCE removal efficiency at the time of toluene feeding was 58%. The recovery of the TCE removal efficiency increased at higher incoming toluene concentrations and longer toluene supply durations according to the Monod type of kinetic expression. A longer duration (1.4∼2.4 times) of toluene supply increased the recovery of the TCE removal efficieny by 20% for the same toluene load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oldenhuis, R., J. Y. Odedzes, J. J. Waarde, and D. B. Janssen (1991) Kinetics of chlorinated hydrocarbon degradation byMethylosinus trichlorosporium OB3b and toxicity of trichloroethylene.Appl. Environ. Microbiol. 57: 7–14.

    CAS  Google Scholar 

  2. Cox, C. D., H. J. Woo, and K. G. Robinson (1998) Cometabolic biodegradation of trichloroethylene (TCE) in the gas phase.Water Sci. Technol. 37: 97–104.

    Article  CAS  Google Scholar 

  3. Nakamura, Y., M. Daidai, and F. Kobayashi (2004) Bioremediation of phenolic compounds having endocrinedisrupting activity using ozone oxidation and activated sludge treatment.Biotechnol. Bioprocess Eng. 9: 151–155.

    Article  CAS  Google Scholar 

  4. Kim, J.-H., W.-H. Jeong, T. B. Karegoudar, and C.-K. Kim (2002) Stable degradation of benzoate byKlebsiella oxytoca C302 immobilized in alginate and polyurethane.Biotechnol. Bioprocess Eng. 7: 347–351.

    Article  CAS  Google Scholar 

  5. Kleopfer, R. D., D. M. Easley, B. B. Hass, Jr. T. G. Deihl, D. E. Jackson, and F. P. Guengerich (1985) Anaerobic degradation of trichloroethylene in soil.Environ. Sci. Technol. 19: 277–280.

    Article  CAS  Google Scholar 

  6. Vogel, T. M. and P. McCarty (1986) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions.Appl. Environ. Microbiol. 49: 1080–1083.

    Google Scholar 

  7. Speital, G. E. Jr. and D. S. McLay (1993) Biofilm reactors for treatment of gas stream containing chlorinated solvents.J. Environ. Eng.-ASCE. 119: 658–678.

    Article  Google Scholar 

  8. Dolasa, A. R. and S. J. Ergas (1999) Membrane bioreactor for cometabolism of trichloroethene air emissions.J. Environ. Eng.-ASCE. 126: 969–973.

    Article  Google Scholar 

  9. Arciero, D., T. Vannelli, M. Logan, and A. B. Hooper (1989) Degradation of trichloroethylene by the ammoniaoxidizing bacteriumNitrosomonas europaea.Biochem. Bioph. Res. Co. 159: 640–643.

    Article  CAS  Google Scholar 

  10. Hyman, M. R., S. A. Russell, R. L. Ely, K. J. Williamson, and D. J. Arp (1995) Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene byNitrosomonas europaea.Appl. Environ. Microbiol. 61: 1480–1487.

    CAS  Google Scholar 

  11. Chang, H. L. and L. Alvarez-Cohen (1997) Two stage methanotrophic bioreactor for the treatment of chlorinated organic wastewater.Water Res. 31: 2026–2036.

    Article  CAS  Google Scholar 

  12. Pressman, J. G., G. Georgiou, and G. E. Speital (1999) Demonstration of efficient trichloroethylene biodegradation in a hollow fiber membrane bioreactor.Biotechnol. Bioeng. 62: 681–692.

    Article  CAS  Google Scholar 

  13. Sukesan, S. and M. E. Watwood (1997) Continuous vapor-phase trichloroethylene biofiltration using hydrocarbon-enriched compost as filtration matrix.Appl. Microbiol. Biotechnol. 48: 671–676.

    Article  CAS  Google Scholar 

  14. Lackey, L. W., J. R. Gamble, and J. L. Boles (2002) Bench-scale evaluation of a biofiltration system used to mitigate trichloroethylene contaminated air streams.Adv. in Environ. Res. 7: 97–104.

    Article  CAS  Google Scholar 

  15. Ely, R. L., K. J. Williamson, R. B. Guenther, M. R. Hyman, and D. J. Arp (1995) A cometabolic kinetics model incorporation enzyme inhibition, inactivation, and recovery: I. Model development, analysis, and testing.Biotechnol. Bioeng. 46: 218–231.

    Article  CAS  Google Scholar 

  16. Ely, R. L., M. R. Hyman, D. J. Arp, R. B. Guenther, and K. J. Williamson (1995) A cometabolic kinetics model incorporation enzyme inhibition, inactivation, and recovery: II. Trichloroethylene degradation experiments.Biotechnol. Bioeng. 46: 232–245.

    Article  CAS  Google Scholar 

  17. Zhang, X. H. and R. K. Bajpai (2000) A comprehensive model for the cometabolism of chlorinated solvents.J. Environ. Sci. Health. A35: 229–244.

    Article  Google Scholar 

  18. Stainer, R. Y., N. J. Palleroni, and M. Doudoroff (1966) The aerobicPseoudomonas: a taxonomic study.J. Gen. Appl. Microbiol. 43: 159–171.

    Google Scholar 

  19. Lenore, S. C., E. G. Arnold, and D. E. Andrew (1998)Standard Methods for the Examination of Water and Wastewater. 18th ed., American Public Health Association Press, Washington DC, USA.

    Google Scholar 

  20. Li, S. and L. P. Wackett (1992) Trichloroethylene oxidation by toluene dioxygenase.Biochem. Bioph. Res. Co. 185: 443–451.

    Article  CAS  Google Scholar 

  21. Wackett, L. P. and D. Gibson (1988) Degradation of trichloroethylene by toluene dioxygenase in whole cell studies withPseudomonas putida F1.Appl. Environ. Microbiol. 54: 1703–1708.

    CAS  Google Scholar 

  22. Wackett, L. P. and S. R. Householder (1989) Toxicity of trichloroethylene toPseudomonas putida F1 is mediated by toluene dioxygenase.Appl. Environ. Microbiol. 55: 2725–2725.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Ho Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, IG., Park, OH., Woo, HJ. et al. Recovery of trichloroethylene removal efficiency through short-term toluene feeding in a biofilter enriched withPseudomonas putida F1. Biotechnol. Bioprocess Eng. 10, 34–39 (2005). https://doi.org/10.1007/BF02931180

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931180

Keywords

Navigation