Log in

Formation and function of compression wood in gymnosperms

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Westing, Arthur H. (Middlebury Coll., Vt.). 1965.Formation and function of compression wood in gymnosperms. Bot. Rev. 31: 381–480

A review with ca. 575 references. The world literature pertaining to the biology of compression wood (Rotholz; reaction wood) is evaluated critically. Compression wood is a geotropic reaction to an inertial force and is peculiar to the Coniferales, Ginkgoales, and Taxales. It is formed by the cambium (or cambial derivatives) of the lower side of inclined stems and branches, where it expandsin situ thereby tending to right the former and maintain (or restore) the inherent angle of the latter. Compression wood is stimulated to form by applications of indoleacetic acid, but under natural conditions is interpreted to result from an increased sensitization of cells on the lower side to an insignificantly changed level of endogenous auxin. A theoretical model of the perception (susception) mechanism is advanced. The mechanics of righting is discussed and the forces involved are estimated. Frequent reference is made to other geotropic phenomena of the higher plants, particularly to tension wood, the analogue of compression wood in the arborescent Dicotyledoneae. Much pertaining to the perception, formation, and function of compression wood remains to be elucidated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Achterberg, H. H. 1953. Bedeutung der fototropischen Kiefernkeimlingsdiagnose für die Anerkennung der Bestände. Wald [now Sozialistische Forstwirtschaft, Berlin]3:269–270.

    Google Scholar 

  • Allary, S. 1958. Remarques sur l’inhibition des bourgeons axillaires de la pousse herbacée des végétaux ligneux. C. R. Acad. Sci., Paris,246: 1071–1073.

    Google Scholar 

  • Anderson, A. P. 1897. Comparative anatomy of the normal and diseased organs ofAbies balsamea affected withAecidium elatinum. Bot. Gaz.24: 309–344 + pl. 14–15.

    Google Scholar 

  • Andreae, W. A., andS. R. Andreae 1953. Studies on indoleacetic acid metabolism. I. Effect of methyl umbelliferone, maleic hydrazide, and 2,4-D on indoleacetic acid oxidation. Canad. J. Bot.31: 426–437.

    CAS  Google Scholar 

  • Anker, L. 1956. Auxin concentration rule for the geotropism ofAvena coleoptiles. Acta Bot. Neerland.5: 335–341.

    CAS  Google Scholar 

  • — 1958. Influence of the pH on the growth and the geotropism of decapitatedAvena coleoptiles supplied either with indoleaetic acid or with indoleacetonitrile. Acta Bot. Neerland.7: 69–76.

    CAS  Google Scholar 

  • Armstrong, L. D., andR. S. T. Kingston. 1962. Effect of moisture content changes on the deformation of wood under stress. Aust. J. Appl. Sci.13: 257–276.

    Google Scholar 

  • Asunmaa, S., andP. W. Lange. 1954. Distribution of the components in the plant cell wall. VII. Distribution of “cellulose” and “hemicellulose” in the cell wall of spruce, birch and cotton. Svensk PappTidn.57: 501–516.

    CAS  Google Scholar 

  • Audus, L. J. 1962. Mechanism of the perception of gravity by plants. Symp. Soc. Exptl. Biol.16: 197–226 + 2 pl.

    Google Scholar 

  • -, andJ. K. Bakhsh. 1959. On the adaptation of pea roots to auxins and auxin homologues.In: Boyce Thompson Institute for Plant Researchet al. (eds.). 1961. Plant growth regulation: fourth international conference on plant growth regulation [Yonkers, New York, Aug. 1959]. Iowa State Univ. Press, Ames, 850 pp. (pp. 109–126).

  • — andM. E. Brownbridge. 1957a. Studies on the geotropisra of roots. I. Growth-rate distribution during response and the effects of applied auxins. J. Exp. Bot.8: 105–124.

    CAS  Google Scholar 

  • ——. 1957b. Studies on the geotropism of roots. II. Effects of the auxin antagonist α(1-naphthylmethylsulphide) propionic acid (NMSP) and its interactions with applied auxins. J. Exp. Bot.8: 235–249.

    CAS  Google Scholar 

  • — andA. N. Lahiri. 1961. Studies on the geotropism of roots. III. Effects of geotropic stimulation on growth-substance concentrations inVicia faba root tips. J. Exp. Bot.12: 75–84.

    CAS  Google Scholar 

  • Bach, H. 1907. Über die Abhängigkeit der geotropischen Präsentationsund Reaktionszeit von verschiedenen Aussenbedingungen. Jahrb. wiss. Botan.44: 57–123.

    Google Scholar 

  • Bailey, I. W. 1920. Cambium and its derivative tissues. II. Size variations of cambial initials in gymnosperms and angiosperms. Amer. J. Bot.7: 355–367.

    Google Scholar 

  • — 1958. Structure of tracheids in relation to the movement of liquids, suspensions, and undissolved gases.In: Thimann, K. V. (ed.) Physiology of forest trees. Ronald Press, New York, 678 pp. (pp.71–82).

    Google Scholar 

  • — andE. E. Berkley. 1942. Significance of X-rays in studying the orientation of cellulose in the secondary wall of tracheids. Amer. J. Bot.29: 231–241.

    Google Scholar 

  • — andT. Kerr. 1937. Structural variability of the secondary wall as revealed by “lignin” residues. J. Arnold Arbor.18: 261–272 + pl. 211–214.

    Google Scholar 

  • Balch, R. E. 1952. Studies of the balsam woolly aphid,Adelges piceae (Ratz.) (Homoptera: Phylloxeridae) and its effects on balsam fir,Abies balsamea (L.) Mill. Can. Dep. Agr., Publ. No. 867, 76 pp.

  • —,J. Clark, andJ. M. Bonga. 1964. Hormonal action in production of tumours and compression wood by an aphid. Nature, London, 202: 721–722.

    Google Scholar 

  • Ball, N. G. 1953. Effects of certain growth-regulating substances on the rhizomes ofAegopodium podagraria. J. Exp. Bot.4: 349–362.

    CAS  Google Scholar 

  • Bannan, M. W. 1941. Variability in wood structure in roots of native Ontario conifers. Bull. Torrey Bot. Cl.68: 173–194.

    Google Scholar 

  • — 1955. Vascular cambium and radial growth inThuja occidentalis L. Canad. J. Bot.33: 113–138.

    Google Scholar 

  • — 1956. Some aspects of the elongation of fusiform cambial cells inThuja occidentalis L. Canad. J. Bot.34: 175–196.

    Google Scholar 

  • — 1957. Girth increase in white cedar stems of irregular form. Canad. J. Bot.35: 425–434 + 1 pl.

    Google Scholar 

  • Bara, M. 1957. Quantité fonctionnelle relative de l’héteroauxine (IAA) dans les réactions phototropiques et géotropiques, et l’action de la gravitation sur la production hormonale. Istanbul Üniv. Fen Fek. Mecmuasi, Ser. B,22: 209–238.

    Google Scholar 

  • — 1962. Action de la gravitation sur le niveau auxinique des hypocotyles de I’Helianthusannuus. Physiol. Plant., Copenhagen,15: 725–728.

    CAS  Google Scholar 

  • Baranetzky, J. 1901. Ueber die Ursachen, welche die Richtung der Aeste der Baumund Straucharten bedingen. Flora, Jena,89: 138–239.

    Google Scholar 

  • Barefoot, A. C., Jr. 1963. Abnormal wood in yellow-poplar,Liriodendron tulipifera. For. Prod. J.13: 16–22.

    Google Scholar 

  • Barykina, R. P., L. V. Kudriashov, andA. N. Klasova. 1963. Structure and development of dwarf, prostrate forms ofPinus mughus Scop, andJuniperus sibirica Burgsd. in the eastern Carpathians (in Russian, English summary). Bot. Z. 48: 949–964.

    Google Scholar 

  • Beakbane, A. B., andE. C. Thompson. 1945. Abnormal lignification in the wood of some apple trees. Nature, London, 156: 145–146.

    Google Scholar 

  • Behre, C. E. 1925. Notes on the cause of eccentric growth in trees. J. For.23: 504–507.

    Google Scholar 

  • Beiguelman, B. 1962. Tension wood in two species of plants common to the Brazilian savanna (in Portuguese, English summary). Anais Acad. Brasil. Ciênc.34: 295–305.

    Google Scholar 

  • Bennet-Clark, T. A., andN. G. Ball. 1951. Diageotropic behavior of rhizomes. J. Exp. Bot.2: 169–203.

    Google Scholar 

  • Berlyn, G. P. 1959. Biometrie technique for reaction tissue research. Proc. Iowa Acad. Sci.66: 98–102.

    Google Scholar 

  • — 1961. Factors affecting the incidence of reaction tissue inPopulus deltoides Bartr. Iowa State J. Sci.35: 367–424.

    Google Scholar 

  • Bethel, J. S. 1964. Develo** architecture of secondary xylem in conifers. For. Sci.10: 89–91.

    Google Scholar 

  • Bismarck, R. von. 1959–1960. Über den Geotropismus der Sphagnen. Flora, Jena,148: 23–83.

    Google Scholar 

  • Bisset, I. J. W., andH. E. Dadswell. 1950. Variation in cell length within one growth ring of certain angiosperms and gymnosperms. Aust. For.14: 17–29.

    Google Scholar 

  • Bland, D. E. 1958a. Chemistry of reaction wood. I. Lignins ofEucalyptus goniocalyx andPinus radiata. Holzforschung, Berlin,12 (2): 36–43.

    CAS  Google Scholar 

  • — 1958b. Spectra of reaction wood lignins in relation to wood maturity. Holzforschung, Berlin,12 (4): 115–116.

    CAS  Google Scholar 

  • — 1961. Chemistry of reaction wood. III. Milled wood lignins ofEucalyptus goniocalyx andPinus radiata. Holzforschung, Berlin,15 (4): 102–106.

    Google Scholar 

  • Bollard, E. G. 1953. Nitrogen metabolism of apple trees. Nature, London,171: 571–572.

    CAS  Google Scholar 

  • — 1957. Translocation of organic nitrogen in the xylem. Aust. J. Biol. Sci.10: 292–301.

    CAS  Google Scholar 

  • Böning, K. 1922–1923. Über den inneren Bau horizontaler und geneigter Sprosse und seine Ursachen. Ber. dtsch. bot. Ges.40: 279–282.

    Google Scholar 

  • — 1925. Über den inneren Bau horizontaler und geneigter Sprosse und seine Ursachen. Mitt. dtsch. dendrol. Ges.1925: 86–102 + pl. 17–20.

    Google Scholar 

  • Bormann, F. H. 1961. Intraspecific root grafting and the survival of eastern white pine stumps. For. Sci.7: 247–256.

    Google Scholar 

  • Bouveng, H. O., andH. Meier. 1959. Studies on a galactan from Norwegian spruce compression wood (Picea abies Karst.). Acta Chem. Scand.13: 1884–1889.

    CAS  Google Scholar 

  • Boyd, J. D. 1950. Tree growth stresses. III. Origin of growth stresses. Aust. J. Sci. Res., Ser. B [now Aust. J. Biol. Sci.]3: 294–309 + 1 pl.

    Google Scholar 

  • Bradley, M. V., andJ. C. Crane. 1957. Gibberellin-stimulated cambial activity in stems of apricot spur shoots. Science126: 972–973.

    PubMed  CAS  Google Scholar 

  • Brain, E. D. 1942. Studies in the effects of prolonged rotation of plants on a horizontal klinostat. III. Physiological reactions in the hypocotyl ofLupinus albus. New Phytol.41: 81–90.

    CAS  Google Scholar 

  • — 1956. Relationship between length of day and geotropic response in seedlings. Nature, London,177: 323–324.

    Google Scholar 

  • Brauner, L. 1954. Tropisms and nastic movements. Annual Review of Plant Physiology5: 163–182.

    CAS  Google Scholar 

  • — andE. Appel. 1960. Zum Problem der Wuchsstoff-querverschiebung bei der geotropischen Induktion. Planta55: 226–234.

    CAS  Google Scholar 

  • — andA. Hager. 1957. Über die geotropische “Mneme.” Naturwissenschaften44: 429–430.

    Google Scholar 

  • ——. 1958. Versuche zur Analyse der geotropischen Perzeption. I. Planta51: 115–147.

    CAS  Google Scholar 

  • — andY. Vardar. 1950. Über die Funktion der Lamina bei der phototropischen und geotropischen Reaktion desTropaeolum-Blattes. Istanbul Üniv. Fen Fek. Mecmuasi, Ser. B,15: 269–299 + 1 pl.

    Google Scholar 

  • — andA. Zipperer. 1961–1962. Über die Anfangsphasen der geotropischen Krümmungsbewegung von Avena-koleoptilen. Planta57: 503–517.

    Google Scholar 

  • Brauns, F. E. 1952. Chemistry of lignin. Academic Press, New York, 808 pp.

    Google Scholar 

  • — andD. A. Brauns. 1960. Chemistry of lignin: supplement volume; covering the literature for the years 1949–1958. Academic Press, New York, 804 pp.

    Google Scholar 

  • Breviglieri, N. 1947. Research on topophysis in the agamic propagation of the tree. Selection of the cion for grafting (in Italian). Rivista delia Società Toscana di Orticultura31: 33–43, 57–65.

    Google Scholar 

  • Brown, A. B. 1937. Activity of the vascular cambium in relation to wounding in the balsam poplar,Populus balsamifera L. Canad. J. Res., Sect. C [now Canad. J. Bot.]15: 7–31 + pl. I.

    Google Scholar 

  • Brown, C. L., andK. Sax. 1962. Influence of pressure on the differentiation of secondary tissues. Amer. J. Bot.49: 683–691.

    Google Scholar 

  • —, andR. H. Wetmore. 1959. Auxin transport in the long shoots of pine. Amer. J. Bot.46: 586–590.

    CAS  Google Scholar 

  • Brown, J. H. 1961. Slope or flat pruning of pines—important consideration in Christmas tree plantation management. J. For.59: 213–214.

    Google Scholar 

  • Brown, J. K. 1963. Crown weights in red pine plantations. U. S. For. Serv., Research Note No. LS-19, 4 pp.

  • Browning, B. L. (ed.). 1963. Chemistry of wood. Interscience Publ., New York, 689 pp.

    Google Scholar 

  • Brumfield, R. T. 1955. Inhibition of curvatures in timothy roots by certain chemicals. Amer. J. Bot.42: 958–964.

    CAS  Google Scholar 

  • Bryant, B. S. 1950–1951. Significance of specific gravity distribution with respect to tree form. Univ. of Washington Forest Club Quarterly24 (1): 18–24.

    Google Scholar 

  • Bücher, H. 1906. Anatomische Veränderungen bei gewaltsamer Krümmung und geotropischer Induktion. Jahrb. wiss. Botan.43: 271–360.

    Google Scholar 

  • Bukovac, M. J. 1963. Chemical promotion of flowering. Amer. Fruit Grower83 (3): 24.

    Google Scholar 

  • Bulard, C. 1948. Inversion du géotropisme par l’hétéroauxine chezThuya orientalis. C. R. Acad. Sci., Paris,227: 443–444.

    CAS  Google Scholar 

  • BüNNiNG, E., andD. Glatzle. 1948–1949. Über die geotropische Erregung. Planta36: 199–202.

    Google Scholar 

  • Burger, H. 1932. Exzentrisches Dickenwachstum, Rotholz und Holzqualität. Schweiz. Z. Forstw.83: 358–362 + 5 ph.

    Google Scholar 

  • Burns, G. P. 1920. Eccentric growth and the formation of redwood in the main stem of conifers. Vermont Univ. Agr. Exp. Sta., Bull. No. 219, 16 pp. + 4 pl.

  • -. 1942. Eccentric growth in the main stem of young white ash trees. Vermont Univ. Agr. Exp. Sta., Bull. No. 492, 19 pp. + 2 pl.

  • Büsgen, M., andE. Münch. 1927. Bau und Leben unserer Waldbäume. 3rd ed. Gustav Fischer, Jena, 426 pp. + numerous pl.

  • Campbell, R. K. 1963. Phenotypic correlation among branch and upper-crown stem attributes in Douglas-fir. For. Sci.9: 444–451.

    Google Scholar 

  • Campredon, J. 1953. Bois de réaction; veine rouge, cellules gélatineuses; leurs caractéres, leur influence sur l’utilisation du bois. Rev. Bois Appl.8 (2): 3–7.

    Google Scholar 

  • Carvalho, A., andC. A. Krug. 1950. Genetics ofCoffea. XIII. Hereditary characteristics ofCoffea arabica L. var.erecta Ottoländer (in Portuguese, English summary). Bragantia10: 321–328 + 2 pl.

    Google Scholar 

  • Casperson, G. 1959a. Elektronenmikroskopische Untersuchungen des Zellwandaufbaues beim Reaktionsholz der Coniferin. Ber. dtsch. bot. Ges.72: 230–235 + 1 pl.

    Google Scholar 

  • — 1959b. Mikroskopischer und submikroskopischer Zellwandaufbau beim Druckholz. Faserforsch. Textiltech.10: 536–541.

    Google Scholar 

  • — 1960. Über die Bildung von Zellwänden bei Laubhölzern. I. Feststellung der Kambiumaktivität durch Erzeugen von Reaktionsholz. Ber. dtsch. bot. Ges.73: 349–357.

    Google Scholar 

  • — 1962. Über die Bildung der Zellwand beim Reaktionsholz. I. Zur Anatomie des Reaktionsholzes. Holztechnol., Dresden,3: 217–223.

    Google Scholar 

  • — 1963. Über die Bildung der Zellwand beim Reaktionsholz. II. Zur Physiologie des Reaktionsholzes. Holztechnol., Dresden,4: 33–37.

    Google Scholar 

  • Champagnat, P. 1955. Corrélations entre feuilles et bourgeons de la pousse herbacée du lilas. Rev. Gén. Bot.62: 325–372 + pl. XXVI-XXXI.

    Google Scholar 

  • Chemical Abstracts. 1961. Chemical Abstracts list of periodicals with key to library files and other information. Chem. Abstr.55: 1J–397J.

    Google Scholar 

  • Chow, K. Y. 1946. Comparative study of the structure and chemical composition of tension wood and normal wood in beech (Fagus sylvatica L.). Forestry20: 62–77 + pl. VI-VII.

    Google Scholar 

  • Cieslar, A. 1896. Rothholz der Fichte. Cbl. ges. Forstw.22: 149–165.

    Google Scholar 

  • Clapham, A. R. 1945. Studies in the depth adjustment of subterranean plant organs. I. Raunkiaer’s experiment on depth perception inPolygonatum. New Phytol.44: 105–109.

    Google Scholar 

  • Clarke, S. H. 1937. Distribution, structure, and properties of tension wood in beech (Fagus silvatica L.). Forestry11: 85–91 + pl. III-IV.

    Google Scholar 

  • — 1939. Stresses and strains in growing timber. Forestry13: 68–79.

    Google Scholar 

  • Clutter, M. E. 1960. Hormonal induction of vascular tissue in tobacco pith in vitro. Science 132: 548–549.

    PubMed  CAS  Google Scholar 

  • Colvin, J. R. 1964. Biosynthesis of cellulose.In: Zimmermann, M. H. (ed.) Formation of wood in forest trees. Academic Press, New York, 562 pp. (pp. 189–201).

    Google Scholar 

  • Commonwealth Forestry Bureau, Great Britain. 1958–1963. Guide to the use of Forestry Abstracts. Revised & enlarged edition + 5 supplements. Commonwealth Agricultural Bureaux, Oxford, 78 + 12 + 8 + 7 + 6 + 6 pp.

    Google Scholar 

  • Commonwealth Scientific and Industrial Research Organization, Australia. 1944–1945. Annual report. C.S.I.R.O., Melbourne, Annual Report1944/45: 6–7.

    Google Scholar 

  • Constantinescu, A. 1956. Preliminary investigations on the formation of compression wood inAbies alba in Chilerei forest in the Timis valley (in Rumanian, German summary). Industr. Lemn.5: 455–457.

    Google Scholar 

  • Core, H. A., W. A. Côté, Jr., andA. C. Day. 1961. Characteristics of compression wood in some native conifers. For. Prod. J.11: 356–362.

    Google Scholar 

  • Craighead, F. C. 1940. Some effects of artificial defoliation on pine and larch. J. For.38: 885–888.

    Google Scholar 

  • Czaja, A. T. 1934. Nachweis des Wuchsstoffes bei Holzpflanzen. Ber. dtsch. bot. Ges.52: 267–271.

    CAS  Google Scholar 

  • Dadswell, H. E., andL. F. Hawley. 1929. Chemical composition of wood in relation to physical characteristics: preliminary study. Industr. Engng. Chem.21: 973–975.

    CAS  Google Scholar 

  • —, andA. B. Wardrop. 1949. What is reaction wood? Aust. For.13: 22–33 + 3 pl.

    Google Scholar 

  • ——. 1955. Structure and properties of tension wood. Holzforschung, Berlin,9 (4): 97–104.

    CAS  Google Scholar 

  • —— andA. J. Watson. 1958. Morphology, chemistry and pul** characteristics of reaction wood.In: Bolam, F. (ed.) Fundamentals of papermaking fibres: symposium, Cambridge, 1957. British Paper & Board Makers’ Assoc., Surrey, 487 pp. (pp. 187–219).

    Google Scholar 

  • Dallimore, W., andA. B. Jackson. 1961. Handbook of Coniferae including Ginkgoaceae. 3rd ed. with corrections. Edw. Arnold, London, 686 pp.

    Google Scholar 

  • Darwin, C., andF. Darwin. 1880. Power of movement in plants. John Murray, London, 592 pp.

    Google Scholar 

  • Delevoryas, T. 1962. Morphology and evolution of fossil plants. Holt, Rinehart, & Winston, New York, 189 pp.

    Google Scholar 

  • Dennis, D. T., andR. D. Preston. 1961. Constitution of cellulose microfibrils. Nature, London,191: 667–668.

    CAS  Google Scholar 

  • Detlefsen, E. 1878–1882. Versuch einer mechanischen Erklärung des excentrischen Dickenwachsthums verholzter Achsen und Wurzeln. Arbeiten des botanischen Instituts in Würzburg2: 670–688 + pl. XIII.

    Google Scholar 

  • Deuber, C. G. 1942. Plagiotropic habit of growth in Norway spruce. Science95: 301.

    PubMed  Google Scholar 

  • Doerner, K., Jr. 1964. Some causes and effects of horizontal density variation in tree stems. For. Sci.10: 24–27.

    Google Scholar 

  • Donner. 1875. Harte und weiche Seite der Kiefer. Zeitschrift für Forstund Jagdwesen, Berlin [†],7:242–245.

    Google Scholar 

  • Dörffling, K. 1963–1964a. Über das Wuchsstoff-Hemmstoffsystem vonAcer pseudoplatanus L. I. Jahresgang der Wuchsund Hemmstoffe in Knospen, Blättern und im Kambium. Planta60: 390–412.

    Google Scholar 

  • — 1963–1964b. Über das Wuchsstoff-Hemmstoffsystem vonAcer pseudoplatanus L. II. Bedeutung von “Inhibitor β” für die korrelative Knospenhemmung und für die Regulation der Kambiumtätigkeit. Planta60: 413–433.

    Google Scholar 

  • Douglass, A. E. 1939–1940. Examples of spiral compression wood. Tree-Ring Bull.6: 21–22.

    Google Scholar 

  • Douin, R. 1948. Sur les tropismes duPsilotum triquetrum. C. R. Acad. Sci., Paris,226: 1210–1212.

    Google Scholar 

  • DuBarry, A. P., Jr. 1963. Germination of bottomland tree seed while immersed in water. J. For.61: 225–226.

    Google Scholar 

  • Dyer, D. 1956. Artificially induced tension wood in ash, birch and poplar. J. Oxf. Univ. For. Soc.4 (4): 19–23.

    Google Scholar 

  • Ehrenberg, C. E. 1961. Increment and branch development in progenies ofPinus sylvestris (in Swedish). Skogen48 (1): 6–8.

    Google Scholar 

  • Eklund, B., andE. Huss. 1946. Investigations of the older forest plantations in the northernmost counties (in Swedish, English summary). Medd. Skogsforskn Inst., Stockholm,35 (6): 104 pp.

  • Emanuel, C. F. 1961. Rare tumor in coast redwood,Sequoia sempervirens. Science133: 1420–1422. Engler, A. 1918. Tropismen und exzentrisches Dickenwachstum der Bäume: Beitrag zur Physiologie und Morphologie der Holzgewächse. Beer & Co., Zürich, 106 pp. + 14 figs.

  • — 1924. Heliotropismus und Geotropismus der Bäume und deren waldbauliche Bedeutung. Mitt, shweiz. Centralanst. forstl. Versuchsw. [now Mitt. Schweiz. Anst. forstl. Versuchsw.]13: 225–283 + 8 figs.

    Google Scholar 

  • Ewart, A. J., andA. J. Mason-Jones. 1906. Formation of red wood in conifers. Ann. Bot., London,20: 201–204 + pl. XV.

    Google Scholar 

  • Fabricius. 1932. Merkwürdiger Fall von Rotholzbildung. Forstwiss. Cbl.54: 422–424.

    Google Scholar 

  • Fielding, J. M. 1940. Leans in Monterey pine (Pinus radiata) plantations. Aust. For. 5: 21–25.

    Google Scholar 

  • Fitting, H. 1905. Untersuchungen über den geotropischen Reizforgang. I. Geotropische Empfindlichkeit der Pflanzen. II. Weitere Erfolge mit der intermittierenden Reizung Jahrb. wiss. Botan.41: 221–330, 331–398.

    Google Scholar 

  • Florin, R. 1948–1949. On the morphology and relationships of the Taxaceae. Bot. Gaz.110: 31–39.

    Google Scholar 

  • Fons, W. L., andW. Y. Pong. 1957. Tree breakage characteristics under static loading: ponderosa pine. U. S. For. Serv., Division of Fire Research, Technical Report No. AFSWP-867, 51 pp.

  • Forest Products Laboratory, U. S. 1953. Simple device for detecting compression wood. U. S. For. Prod. Lab., Madison, Report No. 1390, 2 pp. + 5 figs.

  • Forest Products Research Laboratory, Great Britain. 1956. Reaction wood (tension wood and compression wood). For. Prod. Res., London, Leaflet No. 51, 16 pp.

  • Foster, D. H. 1952. Reactivity of wood cellulose; treatment with dilute sulphuric acid at elevated temperatures. Proc. Aust. Pulp Pap. Ind. Tech. Ass. [now APPITA, Melbourne]6: 76–88 + 1 pl.

    Google Scholar 

  • Frank, B. 1868. Ueber die Einwirkung der Gravitation auf das Wachsthum einiger Pflanzentheile. Botanische Zeitung, Berlin [†],26: 873–882.

    Google Scholar 

  • Fraser, D. A. 1949. Production of spring wood with β-indoleacetic acid (heteroauxin). Nature, London,164: 542.

    CAS  Google Scholar 

  • — 1952. Initiation of cambial activity in some forest trees in Ontario. Ecology33: 259–273

    Google Scholar 

  • Freudenberg, K. 1964. Formation of lignin in the tissue and in vitro.In: Zimmermann, M. H. (ed.) Formation of wood in forest trees. Academic Press, New York, 562 pp. (pp. 203–218).

    Google Scholar 

  • — andF. Bittner. 1953. Versuche mit Coniferylalkohol, der radioaktiven Kohlenstoff enthält. Chem. Ber.86: 155–159

    CAS  Google Scholar 

  • J. M. Harkin, M. Reichert, andT. Fukuzumi. 1958. Die an der Verholzung beteiligten Enzyme. Dehydrierung des Sinapinalkohols. Chem. Ber. 91: 581–590.

    CAS  Google Scholar 

  • — andW. Heimberger. 1950. Biochemische Synthese ligninartiger Stoffe. Chem. Ber.83: 519–530.

    CAS  Google Scholar 

  • —,H. Reznik, H. Boesenberg, andD. Rasenack. 1952. Das an der Verholzung beteiligte Fermentsystem. Chem. Ber.85: 641–647.

    CAS  Google Scholar 

  • ——,W. Fuchs, andM. Reichert. 1955. Untersuchungen über die Entstehung des Lignins und des Holzes. Naturwissenschaften42: 29–35.

    CAS  Google Scholar 

  • Frey-Wyssling, A. 1952. Wachstumsleistungen des pflanzlichen Zytoplasmas. Ber. Schweiz, botan. Ges.62: 583–591.

    Google Scholar 

  • Fritz, E. 1939–1940. Problems in dating rings of California coast redwood. Tree-ring Bull.6: 19–21.

    Google Scholar 

  • Fröhlich, H. J. 1961. Untersuchungen über das physiologische und morphologische Verhalten von Vegetativvermehrungen verschiedener Laubund Nadelbaumarten. Allg. Forstu. Jagdztg. 132: 39–58.

    Google Scholar 

  • Fuller, H. J. 1940–1941. Some temperature relations of geotropism. Trans. Illinois State Acad. Sci.33: 87–88.

    Google Scholar 

  • Gabnay de Hathalm, F. [Hathalmi Gabnay Ferencz]. 1892. Eccentricity of trees (in Hungarian). Pótfüzetek a Természettudományi Közlönyhöz, Budapest,20: 164–169

    Google Scholar 

  • Galston, A. W., J. Bonner, andR. S. Baker. 1953. Flavoprotein and peroxidase as components of the indoleacetic acid oxidase system of peas. Arch. Biochem.42: 456–470.

    PubMed  CAS  Google Scholar 

  • —, andL. Y. Dalberg. 1954. Adaptive formation and physiological significance of indoleacetic acid oxidase. Amer. J. Bot.41: 373–380.

    CAS  Google Scholar 

  • Gates, F. G. 1928. Nutation inPinus sylvestris. Bot. Gaz.85: 451–456.

    Google Scholar 

  • Genkel, P. A. 1960. Distribution of auxin in the stems and roots of plants during geotropic bending (in Russian). Fiziol. Rast.7: 207–213.

    CAS  Google Scholar 

  • Gillespie, B., andK. V. Thimann. 1963. Transport & distribution of auxin during tropistic response. I. Lateral migration of auxin in geotropism. Plant Physiol.38: 214–225.

    PubMed  CAS  Google Scholar 

  • Goldacre, P. L. 1951. Hydrogen peroxide in the enzymic oxidation of heteroauxin. Aust. J. Sci. Res., Ser. B [now Aust. J. Biol. Sci.]4: 293–302.

    CAS  Google Scholar 

  • Goldsmith, M. H. M., andM. B. Wilkins. 1964. Movement of auxin in coleoptiles ofZea mays L. during geotropic stimulation. Plant Physiol.39: 151–162.

    PubMed  CAS  Google Scholar 

  • Gordeev, A. V. 1953. Live stumps (in Russian). Priroda, Moskva,42 (7): 114–115.

    Google Scholar 

  • Gouwentak, C. A. 1936. Kambiumtätigkeit und Wuchsstoff. I. Meded. LandbHogesch., Wageningen,40 (3): 23 pp. + 3 pl.

  • -, andA. L. Maas. 1940. Kambiumtätigkeit und Wuchsstoff. II. Meded. LandbHogesch., Wageningen,44 (1): 16 pp. + 1 pl.

  • Gray, H. R. 1956. Form and taper of forest-tree stems. Imp. For. Inst., Oxford, Paper No. 32, 79 pp.

  • Greene, J. T. 1962. Air-layered branches of slash pine will develop into straight trees. J. For.60: 135.

    Google Scholar 

  • Gregory, F. G., andJ. A. Veale. 1957. Reassessment of the problem of apical dominance. Symp. Soc. Exptl. Biol.11: 1–20 + 3 pl.

    Google Scholar 

  • Grossenbacher, J. G. 1915–1916. Periodicity and distribution of radial growth in trees and their relation to the development of “annual” rings. Trans. Wisconsin Acad. Sci.18: 1–77.

    Google Scholar 

  • Grosset, G. [H.] E. 1959a.Pinus pumila (Pall.) Rgl.: materials on its biological study and economical utilization (in Russian, English summary). Proc. on the Study of the Fauna and Flora of the U.S.S.R., Moscow, N.S. (Bot. Sec.) No. 12 (XX), 140 pp.

  • Grosset, G. E. 1959b. Study on the ecology ofPinus pumila Rgl. (Mechanism of active bending down to the ground with the onset of frosts) (in Russian, English summary). Bjull. Mosk. Obsc. Ispyt. Prir. (Otd. Biol.)64 (2): 85–96.

    Google Scholar 

  • Grossman, P. U. A., andR. S. T. Kingston. 1954. Creep and stress relaxation in wood during bending. Aust. J. Appl. Sci.5: 403–417.

    Google Scholar 

  • Gunckel, J. E., andK. V. Thimann. 1949. Studies of development in long shoots and short shoots ofGinkgo biloba L. III. Auxin production in shoot growth. Amer. J. Bot.36: 145–151.

    CAS  Google Scholar 

  • Günther-Massias, M. 1928–1929. Über die Gültigkeit des Reizmengengesetzes bei der Summation unterschwelliger Reize. Z. Botan.21: 129–172.

    Google Scholar 

  • Guttenberg, H. v., andK. Zetsche. 1956–1957. Einfluss des Lichtes auf die Auxinbildung und den Auxintransport. Planta48: 99–134.

    Google Scholar 

  • Haberlandt, G. 1900. Ueber die Perception des geotropischen Reizes. Ber. dtsch. bot. Ges.18: 261–272.

    Google Scholar 

  • Hager, A., andU. Schmidt. 1964. Zum Problem der geotropischen Induktion. Ber. dtsch. bot. Ges.66: 329–341.

    Google Scholar 

  • Hägglund, E., andS. Ljunggren. 1933. Untersuchungen des Rotholzes von Fichte. I. Chemische Zusammenstezung des Rotholzes. Svensk Kern. Tidskr.45: 123–129.

    Google Scholar 

  • Haller, B. 1935. Investigations of eccentric diameter growth of conifer stems (in Estonian, German summary). Tartu Ülikooli Metsaosakonna Toimetused No. 24, 223 pp. + 3 figs. + 20 tbls.

  • Halma, F. F. 1925–1926. Factors governing the initiation of sprout growth inCitrus shoots. Hilgardia, Berkeley,1: 295–340.

    Google Scholar 

  • Harada, H., andY. Miyazaki. 1952. Electron-microscopic observation of compression wood (in Japanese, English summary). Bull. For. Exp. Sta., Tokyo,54: 101–108 + 6 pl.

    Google Scholar 

  • Hartig, R. 1896. Rothholz der Fichte. Forstlich-naturwissenschaftliche Zeitschrift, München,5: 96–109, 157–169.

    Google Scholar 

  • — 1899. Ueber die Ursachen excentrischen Wuchses der Waldbäume. Cbl. ges. Forstw.25: 291–307.

    Google Scholar 

  • — 1901. Holzuntersuchungen. Altes und Neues. J. Springer, Berlin, 99 pp.

    Google Scholar 

  • Hartig, T. 1844. Review of “Beobachtungen über das sogenannte Ueberwallen der Tannenstöcke ...” Allg. Forstu. Jagdztg., N.S.,13: 96–99.

    Google Scholar 

  • Hartmann. 1925. Ueber die Säbelwüchsigkeit der Bäume. Cbl. ges. Forstw.51: 165–194.

    Google Scholar 

  • Hartmann, F. 1932a. Untersuchungen über Ursachen und Gesetzmässigkeit exzentrischen Dickenwachstums bei Nadelund Laubbäumen. Forstwiss. Cbl.54: 497–517, 547–566, 581–590, 622–634.

    Google Scholar 

  • — 1932b. Zu “Ein merkwürdiger Fall von Rotholzbildung.” Forstwiss. Cbl.54: 494–496.

    Google Scholar 

  • — 1933. Drei Grundformen in der Rotholzanordnung beim Nadelholze. Forstwiss. Cbl.55: 314–322.

    Google Scholar 

  • — 1942. Statische Wuchsgesetz bei Nadelund Laubbäumen. Springer-Verlag, Vienna, 111 pp.

    Google Scholar 

  • — 1943. Frage der Gleichgewichtsreaktion von Stamm und Wurzel heimischer Waldbäume. Biol. Generaiis [†]17: 367–418.

    Google Scholar 

  • Hata, K. 1951. Studies on the pulp ofPinus densiflora S. et Z. wood. IX. On the chemical composition and pulp of compression wood (in Japanese, English summary). J. Jap. For. Soc.33: 136–140.

    CAS  Google Scholar 

  • Hatcher, E. S. J. 1947. Study of auxin in shoots of apple and plum. Ann. Rept. East Mailing Res. St., Kent, 1947: 113–116.

    Google Scholar 

  • Hattori, S., S. Yoshida, andM. Hasegawa. 1954. Occurrence of shikimic acid in the leaves of gymnosperms. Physiol. Plant., Copenhagen,7: 283–289.

    CAS  Google Scholar 

  • Haught, A. E., Jr. 1958. Exploratory study of compression wood in loblolly pine (Pinus taeda L.). N. Carolina State Col., Raleigh, M.F. thesis, 65 pp.

  • Hausendorff, E. 1951–1952. Schirmkiefer bei Mölln: eine ungewöhnliche Störung der Höhenwuchstendenz und des Verzweigungssystems vonPinus silvestris L. Mitt. dtsch. dendrol. Ges.57: 81–102, 105.

    Google Scholar 

  • — 1957–1958. Schirmkiefern und ein weiteres Wuchsstoff-Wirkstoff-problem bei Bäumen. Mitt, dtsch. dendrol. Ges.60: 72–79 + pl. XV-XVIII.

    Google Scholar 

  • Hawker, L. E. 1932. Quantitative study of the geotropism of seedlings with special reference to the nature and development of their statolith apparatus. Ann. Bot., London,46: 121–157.

    Google Scholar 

  • — 1933. Effect of temperature on the geotropism of seedlings ofLalhyrus odoratus. Ann. Bot., London,47: 503–515

    Google Scholar 

  • Heitmüller, H. H., andG. H. Melchior. 1960. Über die blühfördernde Wirkung des Wurzelschnitts, des Zweigkrümmens und der Strangulation an japanischer Lärche (Larix leptolepis [Sieb, et Zucc] Gord.). Silvae Genet.9: 65–72.

    Google Scholar 

  • Hertel, R., andA. C. Leopold. 1962–1963. Versuche zur Analyse des Auxintransports in der Koleoptile vonZea mays L. Planta59: 535–562

    Google Scholar 

  • Higuchi, T. 1957. Biochemical studies of lignin formation. III. Physiol. Plant., Copenhagen,10: 633–648.

    Google Scholar 

  • —,I. Kawamura, N. Yamasaki, andI. Morimoto. 1955. On the formation of lignin inPhyllostachys shoots. V. Inhibitory effect of ascorbic-acid-glutathione system on the oxidative condensation of coniferyl alcohol by peroxidase (in Japanese, English summary). J. Jap. For. Soc.37: 502–507.

    CAS  Google Scholar 

  • Hohenadl, W. 1924. Aufbau der Baumschäfte. Forstwiss. Cbl.68: 460–470, 495–508.

    Google Scholar 

  • Holmes, W. H. 1944. Amount and distribution of compression wood in leaning white pine trees. Yale Univ., New Haven, M.F. thesis, 28 pp.

  • Holmgren, A. 1959. Some peculiar forms ofPinus sylvestris andPicea abies (in Swedish). Svenska SkogsvFören. Tidskr.57: 9–42.

    Google Scholar 

  • Huber, B. 1948. Physiologie der Rindenschälung bei Fichte und Eiche. Forstwiss. Cbl.67: 129–164.

    Google Scholar 

  • Irvine, J. E., andR. H. Freyre. 1961. Diageotropism inVanilla roots. Science134: 56–57.

    PubMed  Google Scholar 

  • Ishikawa, H., andK. Takaichi. 1957. Lignin and lignification. VI. Formation of lignin in young plants. II (in Japanese, English summary). J. Jap. For. Soc.39: 70–73.

    CAS  Google Scholar 

  • Jaccard, P. 1912. Über abnorme Rotholzbildung. Ber. dtsch. bot. Ges.30: 670–678.

    Google Scholar 

  • -, 1919. Nouvelles recherches sur l’accroissement en épaisseur des arbres: essai d’une théorie physiologique de leur croissance concentrique et excentrique. Fondation Schnyder von Wartensee, Zurich, 200 pp. + 32 pl.

  • — 1920. Inversion de l’excentricité des branches produite expérimentalement. Rev. Gén. Bot.32: 273–281 + pl. 7–8.

    Google Scholar 

  • — 1922. Sur le mécanisme du redressement géotropique de la tige des arbres. Rev. Gén. Bot.34: 385–398

    Google Scholar 

  • — 1924–1927. Influence de la courbure des tiges sur leur croissance en épaisseur. Mém. Soc. Vaudoise Sci. Nat.2: 141–162.

    Google Scholar 

  • — 1930. Über die mechanischen und physiologischen Wirkungen des Windes auf die Gestalt der Baumstämme. Schweiz. Z. Forstw.81: 87–99.

    Google Scholar 

  • — 1934. Über Versuche zur Bestimmung der Zellsaftkonzentration in der Kambialzone beim exzentrischen Dickenwachstum. II. Jahrb. wiss. Botan.81: 35–58.

    CAS  Google Scholar 

  • — 1938. Exzentrisches Dickenwachstum und anatomisch-histologische Differenzierung des Holzes. Ber. Schweiz, botan. Ges.48: 491–537 + pl. VII-IX.

    Google Scholar 

  • — 1939. Tropisme et bois de réaction provoqués par la force centrifuge. Ber. Schweiz, botan. Ges.49: 135–147.

    Google Scholar 

  • — 1940a. Sur les épaississements spiralés et les striations des parois des fibres, des vaisseaux ou de trachéides du bois et leur signification. Ber. Schweiz, botan. Ges.50: 285–292.

    Google Scholar 

  • — 1940b. Tropisme et bois de réaction provoqués par la force centrifuge chez des feuillus. Ber. Schweiz, botan. Ges.50: 279–284

    Google Scholar 

  • — andA. Frey. 1928a. Einfluss von mechanischen Beanspruchungen auf die Micellarstruktur, Verholzung und Lebensdauer der Zugund Druckholzelemente beim Dickenwachstum der Bäume. Jahrb. wiss. Botan.68: 844–866 + pl. 15.

    Google Scholar 

  • —. 1928b. Quellung, Permeabilität und Filtrationswiderstand des Zugund Druckholzes von Laubund Nadelbäumen. Jahrb. wiss. Botan.69: 549–571 + pl. 2.

    Google Scholar 

  • Jacobs, M. R. 1936. Effect of wind on trees. Aust. For.1 (2): 25–32.

    Google Scholar 

  • -. 1938. Fibre tension of woody stems, with special reference to the genusEucalyptus. Commonwealth Forestry Bureau, Australia, Bull. No. 22, 37 pp.

  • -. 1939a. Further studies on fibre tension. Commonwealth Forestry Bureau, Australia, Bull. No. 24, 36 pp.

  • -. 1939b. Study of the effect of sway on trees. Commonwealth Forestry Bureau, Australia, Bull. No. 26, 17 pp. -. 1945. Growth stresses of woody stems. Commonwealth Forestry Bureau, Australia, Bull. No. 28, 67 pp.

  • — 1954. Effect of wind sway on the form and development ofPinus radiata D. Don. Aust. J. Bot.2: 35–51.

    Google Scholar 

  • Jacobs, W. P. 1952. Role of auxin in differentiation of xylem around a wound. Amer. J. Bot.39: 301–309.

    CAS  Google Scholar 

  • — 1954. Acropetal auxin transport and xylem regeneration—quantitative study. Amer. Nat.88: 327–337.

    Google Scholar 

  • —, andI. B. Morrow. 1957. Quantitative study of xylem development in the vegetative shoot apex ofColeus. Amer. J. Bot.44: 823–842.

    Google Scholar 

  • Jagels, R. 1963. Gelatinous fibers in the roots of quaking aspen. For. Sci.9: 440–443.

    Google Scholar 

  • Jane, F. W. 1952. Structure of wood in relation to its properties and uses. VI. Abnormal wood. Wood17: 101–104.

    Google Scholar 

  • Jankiewicz, L. 1956. Effect of auxins on crotch angles in apple trees. Bull. Acad. Polon. Sci., Classe II,4: 173–178.

    Google Scholar 

  • — 1957. Formation of crotch angles inMalus pumila trees (in Polish, English summary). Prace Instytutu Sadownictwa, Skierniewicach,2: 131–147.

    Google Scholar 

  • — 1960. Effect of maleic hydrazide on branching of one-year-oldMalus pumila cv. Pi(ckna z Rept trees (in Russian, English summary). Bull. Acad. Polon. Sci., Classe V,8 (9): 515–517.

    CAS  Google Scholar 

  • — 1961. Simplification of Gelfandbein’s system in the training of youngMalus pumila cv. Antonovka trees (in Polish, English summary). Acta Agrobotan., Warsaw,10: 5–17.

    Google Scholar 

  • —,B. Szpunar, H. Barańska, R. Rumplowa, andK. Fiutkowska. 1961. Use of auxin to widen crotch angles in youngMalus pumila trees (in Polish, English summary). Acta Agrobotan., Warsaw,10: 151–171.

    Google Scholar 

  • Jayme, G., andM. Harders-Steinhäuser. 1950. Über die chemische Zusammensetzung des Zugholzes in einem Pappelholz. Papier, Darmstadt,4: 104–113.

    CAS  Google Scholar 

  • ——. 1954. Durch Unterdrückung im engen Wachstumsverband hervorgerufene Eigenschaftsänderungen junger Pappelhölzer. Holz Rohu. Werkstoff12: 3–7.

    Google Scholar 

  • Jensen, W. A. 1955. Histochemical localization of peroxidase in roots and its induction by indoleacetic acid. Plant Physiol.30: 426–432.

    PubMed  CAS  Google Scholar 

  • Jermyn, M. A., andR. Thomas. 1954. Multiple components in horse-radish peroxidase. Biochem. J.56: 631–639.

    PubMed  CAS  Google Scholar 

  • Johnsen, B., andR. W. Hovey. 1918. Determination of cellulose in wood. J. Soc. Chem. Ind., London, [now J. Appl. Chem.]37: 132T-137T.

    Google Scholar 

  • Johnson, N. E., R. G. Mitchell, andK. H. Wright. 1963. Mortality and damage to pacific silver fir by the balsam woolly aphid in southwestern Washington. J. For.61: 854–860.

    Google Scholar 

  • Jost, L. 1893. Ueber Beziehungen zwischen der Blattentwickelung und der Gefässbildung in der Pflanze. Botanische Zeitung, Berlin [f],58: 89–138 + pl. V.

    Google Scholar 

  • — 1901. Ueber einige Eigentümlichkeiten des Cambiums der Bäume. Botanische Zeitung, Berlin [†],59: 1–24 + pl. I.

    Google Scholar 

  • Jutte, S. M., andJ. Isings. 1955. Determination of tension wood in ash with the aid of the phase-contrast microscope. Experientia, Basle,11: 386–387.

    Google Scholar 

  • Kaeiser, M., andM. Y. Pillow. 1955. Tension wood in eastern cottonwood. Cent. St. For. Exp. Sta., Technical Paper No. 149, 9 pp.

  • Kaiser, S. 1935. Inheritance of a geotropic response inCapsicum fruits. Bull. Torrey Bot. CI.62: 75–80 + pl. 6.

    Google Scholar 

  • Kaldewey, H. 1962. Plagiound Diageotropismus der Sprosse und Blätter, einschliesslich Epinastie, Hyponastie, Entfaltungsbewegungen.In: Ruhland, W. (ed.) Encyclopedia of plant physiology, vol. 17, pt. 2. Springer-Verlag, Berlin, 1174 pp. (pp. 200–321).

    Google Scholar 

  • — 1963–1964. Geschwindigkeit, Intensität und Kapazität des Wuchsstofftransports in geotropisch gereizten Fruchtstielen der SchachblumeFritillaria meleagris L. Planta60: 178–204.

    CAS  Google Scholar 

  • Kano, T. 1957. Forest-biological studies on wood quality. XIV. On the dimension of bulk-density of wood and its distribution in the stem ofAbies sachalinensis mayrlana (in Japanese, English summary). Bull. For. Exp. Sta., Tokyo,101: 1–99.

    Google Scholar 

  • Kantola, M. 1958. On the fiber structure of normalBetula pubescens wood and tension wood by X-ray diffraction technique (in Finnish, English summary). Pap. ja Puu40: 431–434, 436.

    CAS  Google Scholar 

  • Karschon, R. 1949–1950. Untersuchungen über die physiologische Variabilität von Föhrenkeimlingen autochthoner Populationen. Mitt. Schweiz. Anst. forstl. Versuchsw.26: 205–244.

    Google Scholar 

  • Karzel, R. 1906. Experimentelle Beiträge zur Kenntnis der Heterotrophie von Holz und Rinde beiTilia sp. undAesculus hippocastanum 22. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, Wien, Pt. 1,115: 1347–1368 + 1 pl.

    Google Scholar 

  • Kato, J., W. K. Purves, andB. O. Phinney. 1962. Gibberellin-like substances in plants. Nature, London, 1%: 687–688.

  • Kennedy, R. W. 1961. Variation and periodicity of summerwood in some second-growth Douglas-fir. Tappi44: 161–166.

    CAS  Google Scholar 

  • Kienholz, R. 1930. Wood structure of a “pistol-butted” mountain hemlock. Amer. J. Bot.17: 739–764.

    Google Scholar 

  • Klaehn, F. U. 1962. Relation of vegetative propagation to topophysis, cyclophysis and periphysis in forest trees. Proc. Ntheast. For. Tree Impr. Conf.10: 42–50.

    Google Scholar 

  • Kleinschmit, R. 1961. Versuche mit Fichtenstecklingen für einen genetischen Test. Silvae Genet.10: 10–20.

    Google Scholar 

  • Knigge, W. 1958. Phänomen der Reaktionsholzbildung und seine Bedeutung für die Holzverwendung. Forstarchiv29: 4–10.

    Google Scholar 

  • Knight, T. A. 1801. Account of some experiments on the ascent of the sap in trees. Phil. Trans. Roy. Soc. London1801: 333–353 + pl. XXIV-XXVII.

    Google Scholar 

  • — 1803. Account of some experiments on the descent of the sap in trees. Phil. Trans. Roy. Soc. London1803: 277–289 + pl. IV.

    Google Scholar 

  • Kny. 1873. Ueber die Bedeutung der Florideen in morphologischer und histologischer Beziehung und den Einfluss der Schwerkraft auf die Coniferenblätter. Botanische Zeitung, Berlin [†],31: 433–435.

    Google Scholar 

  • —. 1877. Dickenwachsthum des Holzkörpers an beblätterten Sprossen und Wurzeln und seine Abhängigkeit von äusseren Einflüssen, insbesondere von Schwerkraft und Druck. Sitzungs-berichte der Gesellschaft naturforschender Freunde zu Berlin1877: 23–50.

    Google Scholar 

  • Kny, L. 1908. Über das Dickenwachstum des Holzkörpers der Wurzeln in seiner Beziehung zur Lotlinie. Ber. dtsch. Bot. Ges.26: 19–50.

    Google Scholar 

  • Koehler, A. 1924. Properties and uses of wood. McGraw-Hill, New York, 354 pp.

    Google Scholar 

  • — 1933. New hypothesis as to the cause of shakes and rift cracks in green timber. J. For.31: 551–556.

    Google Scholar 

  • -. 1946. Longitudinal shrinkage of wood. U. S. For. Prod. Lab., Madison, Report No. 1093, 8 pp. + 12 figs.

  • Konings, H. 1961. Influence of gibberellic acid and 2,4-dichlorophenol on the geotropic curvature of pea roots. Proc. Koninkl. Ned. Akad. Wetenschap., Ser. C,64: 405–409.

    Google Scholar 

  • Kononchuk, P. I. 1888. On the local or one-sided “hard-layerness” of trees (in Russian). Yearbook of the St. Petersburg Forest Institute 2 (Unofficial Sect.): 41–56 + 4 pl.

  • Krabbe, G. 1882. Über die Beziehungen der Rindenspannung zur Bildung der Jahrringe und zur Ablenkung der Markstrahlen. Sitzungsberichte der königlich preussischen Akademie der Wissenschaften zu Berlin [now Sitzber. deut. Akad. Wiss. Berlin], Mathematische und naturwissenschaftliche Mittheilungen1882: 617–667.

    Google Scholar 

  • -. 1884. Über das Wachsthum des Verdickungsringes und der jungen Holzzellen in seiner Abhängigkeit von Druckwirkungen unter Berücksichtigung der Rindenspannung. Abhandlungen der königlich preussischen Akademie der Wissenschaften zu Berlin [now Abhandl. deut. Akad. Wiss. Berlin]1884 (1): 83 pp.+ 2 pl.

  • Kratzl, K., andG. Billek. 1956–1957. Zur Biogenese des Lignins; Synthese und Prüfung von Ligninvorstufen. Holzforschung, Berlin,10 (6): 161–178.

    Google Scholar 

  • -, and - (eds.). 1958. Biochemistry of wood. Proc. Intern. Congr. Biochem. (Vienna) 4 (vol. 2): 285 pp.

  • Kraus, G. 1882. Ueber die Wasservertheilung in der Pflanze. II. Zellsaft und seine Inhalte. Abhandlungen der naturforschenden Gesellschaft zu Halle15: 49–120.

    Google Scholar 

  • Kulp, J. L. 1961. Geologie time scale. Science133: 1105–1114.

    PubMed  Google Scholar 

  • Kuroyanagi, S. 1953. Spectrochemical studies of woods and trees. III. On the qualitative analysis of the chemical elements in woods and trees by emission spectroscopy (in Japanese, English summary). Okayama Univ., Faculty of Agriculture, Scientific Report No.2: 92–106 + 1 tbl.

    Google Scholar 

  • Kuse, G. 1961. Correlative growth of lateral bud inIpomoea batatas shoot. Mem. Coll. Sci., Univ. Kyoto, Ser. B,28: 431–453.

    CAS  Google Scholar 

  • Lämmermayr, L. 1901. Beiträge zur Kenntnis der Heterotrophie von Holz und Rinde. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, Wien, Pt. 1,110: 29–62 + 2 pl.

    Google Scholar 

  • Lange, P. W. 1954. Distribution of the components in the plant cell wall. IX. Distribution of lignin in the cell wall of normal and reaction wood from spruce and a few hardwoods. Svensk PappTidn.57: 525–532

    CAS  Google Scholar 

  • Langham, D. G. 1941. Effect of light on growth habit of plants. Amer. J. Bot.28: 951–956.

    Google Scholar 

  • Lanner, R. M. 1961. Living stumps in the Sierra Nevada. Ecology42: 170–173.

    Google Scholar 

  • Larsen, P. 1953. Influence of gravity on rate of elongation and on geotropic and autotropic reactions in roots. Physiol. Plant., Copenhagen,6: 735–774.

    Google Scholar 

  • — 1962. Orthogeotropism in roots.In: Ruhland, W. (ed.) Encyclopedia of plant physiology, vol. 17, pt. 2. Springer-Verlag, Berlin, 1174 pp. (pp. 153–199).

    Google Scholar 

  • Larson, P. R. 1960. Physiological consideration of the springwood summerwood transition in red pine. For. Sci.6: 110–122.

    CAS  Google Scholar 

  • — 1962a. Auxin gradients and the regulation of cambial activity.In: Kozlowski, T. T. (ed.) Tree growth. Ronald Press, New York, 442 pp. (pp. 97–117).

    Google Scholar 

  • — 1962b. Indirect effect of photoperiod on tracheid diameter inPinus resinosa. Amer. J. Bot.49: 132–136.

    Google Scholar 

  • -. 1963. Stem form development of forest trees. For. Sci. Monogr. No. 5, 42 pp.

  • Lasschuit, J. A. 1951. Alterations in spirally curved trees ofPinus merkusii. Tectona [†]41: 179–188.

    Google Scholar 

  • Lawrence, G. H. M. 1951. Taxonomy of vascular plants. Macmillan, New York, 823 pp.

    Google Scholar 

  • Lee, C. L. 1961. Crystallinity of wood cellulose fibres studied by X-ray methods. For. Prod. J.11 (2): 108–112.

    CAS  Google Scholar 

  • Leopold, A. C., andF. S. Guernsey. 1953–1954. Auxin polarity in theColeus plant. Bot. Gaz.115: 147–154.

    CAS  Google Scholar 

  • Leroux, R. 1954. Recherches sur les modifications anatomiques de trois espèces d’osiers (Salix viminalis L.,Salix purpurea L.,Salix fragilis L.) provoquées par l’acide naphthalène-acétique. C. R. Soc. Biol., Paris,148: 284–286.

    CAS  Google Scholar 

  • Lindgren, P.-H. 1958. X-ray orientation investigations on some Swedish cellulose materials. Arkiv Kemi12: 437–452.

    CAS  Google Scholar 

  • Link, G. K. K., V. Eggers, andJ. E. Moulton. 1939–1940.Avena coleoptile assay of ether extracts of aphids and their hosts. Bot. Gaz.101: 928–939.

    Google Scholar 

  • Lipetz, J. 1962. Calcium and the control of lignification in tissue cultures. Amer. J. Bot.49: 460–464.

    CAS  Google Scholar 

  • Little, E. L., Jr. 1953. Check list of native and naturalized trees of the United States (including Alaska). U. S. Dep. Agric, Handbook No. 41, 472 pp.

  • Longman, K. A., andP. F. Wareing. 1958. Gravimorphism in trees: effect of gravity on flowering and shoot growth in Japanese larch (Larix leptolepis, Murray). Nature, London,182: 380–381.

    Google Scholar 

  • Luckwill, L. C. 1952. Application of paper chromatography to the separation and identification of auxins and growth-inhibitors. Nature, London,169: 375.

    CAS  Google Scholar 

  • — 1955. Virus diseases of fruit trees. V. Experiments on rubbery wood, mosaic and flat limb of apples. Annual Report Long Ashton Research Station, Univ. Bristol, 1955: 51–57 -f pl. II.

    Google Scholar 

  • Lukić-Simonović, N. 1955. Survey of compression wood (in Serbo-Croatian, English summary). Šumarstvo8: 474–479.

    Google Scholar 

  • Lundegårdh, H. 1916–1917. Physiologische Studien über die Baumarchitektonik. Kungliga Svenska Vetenskapsakademiens Handlingar, Stockholm, N.S.,56 (3): 64 pp. + 11 Pl.

  • Lutz, H. J. 1930. A new species ofCupressinoxylon (Goeppert) Gothan from the Jurassic of South Dakota. Bot. Gaz.90: 92–107.

    Google Scholar 

  • Lyon, C. J. 1962. Gravity factor for auxin transport. Science137: 432–433.

    PubMed  Google Scholar 

  • — 1963. Auxin factor in branch epinasty. Plant Physiol.38: 145–152.

    PubMed  CAS  Google Scholar 

  • Maácz, G. J., andE. Vágás. 1963. Untersuchung des Zugholzes mit dreifacher Färbung. Acta Biol. Acad. Sci. Hung.13: 341–346 + 1 pl.

    Google Scholar 

  • MacDougal, D. T. 1939. Features of growth-control in trees. Proc. Amer. Phil. Soc. 81: 421–445.

    Google Scholar 

  • Manskaja, S. M. 1948. Role of oxidase in lignin formation (in Russian). Dokl. Akad. Nauk SSSR62: 369–372.

    Google Scholar 

  • — 1958. Zur Phylogenese des Lignins. Proc. Intern. Congr. Biochem. (Vienna)4 (vol. 2): 215–226.

    Google Scholar 

  • Mariani, P. 1955. Growth and histological characteristics of an eccentric stem ofLarix decidua (in Italian, French summary). Ital. For. Mont.10: 216–224 + 4 ph.

    Google Scholar 

  • Mark, H. et al. (eds.). 1961. Third cellulose conference; Syracuse, New York, October 26–28, 1960. J. Polymer Sci.51: 1–381.

  • Markwardt, L. J., andT. R. C. Wilson. 1935. Strength and related properties of woods grown in the United States. U. S. Dep. Agric, Technical Bull. No. 479, 99 pp. + 2 tbls.

  • Martley, J. F. 1928. Theoretical calculation of the pressure distribution on the basal section of a tree. Forestry2: 69–72.

    Google Scholar 

  • Massart, J. 1924. Coopération et le conflit des réflexes qui déterminent la forme du corps chezAraucaria excelsa R. Br. Acad. Roy. Belg., Classe Sci., Mém., Collection in 4o, Ser.2,5 (8): 33 pp. + 12 pl.

  • Matsumoto, T. 1950a. Studies on compression wood. I. On the spiral cracks in the tracheid wall (in Japanese, English summary). J. Jap. For. Soc.32: 16–20.

    Google Scholar 

  • — 1950b. Studies on compression wood. II. On the tracheid length of compression wood (in Japanese, English summary). J. Jap. For. Soc.32: 21–27.

    Google Scholar 

  • — 1950c. Studies on compression wood. III. Compression strength and failures inCryptomeria japonica (in Japanese). Iwate Univ., Morioka Col. of Agriculture and Forestry, Bull.26: 89–95.

    Google Scholar 

  • — 1951. Mechanical study on heartwood (in Japanese, English summary). Kyushu Univ., Faculty of Agriculture, Science Bull.13: 230–233.

    Google Scholar 

  • — 1957. Studies on compression wood. V. Relation of the slope angle of the fibrils to shrinkage of leaningThujopsis dolabrata (in Japanese, English summary). Iwate Univ., Faculty of Agriculture, Science Bull.3: 190–193

    Google Scholar 

  • McCune, D. C. 1961. Multiple peroxidases in corn. Ann. N. Y. Acad. Sci.94: 723–730.

    CAS  Google Scholar 

  • McLean, F. T. 1939–1941. Loop method of dwarfing plants and inducing flowering. Contr. Boyce Thompson Inst.11: 123–125.

    Google Scholar 

  • McWilltam, J. R., andR. G. Florence. 1955. Improvement in quality of slash pine plantations by means of selection and cross breeding. Aust. For.19: 8–12.

    Google Scholar 

  • Meier, H. 1962. Studies on a galactan from tension wood of beech (Fagus silvatica L.). Acta Chem. Scand.16: 2275–2283.

    CAS  Google Scholar 

  • — 1964. General chemistry of cell walls and distribution of the chemical constituents across the walls.In: Zimmermann, M. H. (ed.) Formation of wood in forest trees. Academic Press, New York, 562 pp. (pp. 137–151).

    Google Scholar 

  • Melchior, G. H. 1960. Erhöhung der Blühwilligkeit an Pfröpflingen der Japanlärche (Larix leptolepis (Sieb, und Zucc.) Gord). Naturwissenschaften47: 502.

    Google Scholar 

  • — 1961. Versuche zur Förderung der Blühwilligkeit an japanischen LärchenPfröpflingen (Larix leptolepis). Silvae Genet.10: 20–27.

    Google Scholar 

  • Mer, É. 1887. Formation du boisrouge dans le sapin et l’épicéa. C. R. Acad. Sci., Paris,104: 376–378.

    Google Scholar 

  • — 1888. Causes qui produisent l’excentricité de la moelle dans les sapins. C. R. Acad. Sci., Paris,106: 313–316.

    Google Scholar 

  • — 1888–1889. Recherches sur les causes d’excentricité de la moelle dans les sapins. Rev. Eaux For. [now Rev. For. Franc.]27: 461–471, 523–530, 562–572;28: 19–27, 67–71, 119–130, 151–163, 197–217.

    Google Scholar 

  • Mergen, F. 1958. Distribution of reaction wood in eastern hemlock as a function of its terminal growth. For. Sci.4: 98–109.

    Google Scholar 

  • —, andH. I. Winer. 1952. Compression failures in the boles of living conifers. J. For.50: 677–679.

    Google Scholar 

  • Metzger, K. 1908. Über das Konstruktionsprinzip des sekundären Holzkörpers. Naturwissenschaftliche Zeitschrift für Forstund Landwirtschaft, Stuttgart [†],6: 249–273 + pl. IV-V.

    Google Scholar 

  • Millett, M. R. O. 1944. Lean and ellipticity of stems of Monterey pine in the Australian Capital Territory. Commonwealth Forestry Bureau, Australia, Leaflet No. 60, 10 pp. + 1 pl.

  • Mirov, N. T. 1941. Distribution of growth hormone in shoots of two species of pine. J. For.39:457–464.

    CAS  Google Scholar 

  • — 1943. Can branch cuttings of conifers develop into straight trees? J. For.41: 369–370.

    Google Scholar 

  • Molisch, H. 1929. Lebensdauer der Pflanze. G. Fischer, Jena, 168 pp.

  • Molotkovsky, G. H., andU. G. Molotkovsky. 1953. New method of breaking dormancy in woody species (in Russian). Dokl. Akad. Nauk SSSR90: 101–104.

    Google Scholar 

  • Moore, T. R., andF. H. Yorston. 1945. Wood properties in relation to sulphite pul**. Pulp Paper Mag. Can.46: 161–164.

    CAS  Google Scholar 

  • Mork, E. 1928. On compression wood (in Norwegian). Tidsskr. Skogbr.36 (supple.): 1–41.

    Google Scholar 

  • Mudrich, H. 1952–1953. Ausformung der Lärchenjugendkrone in Abhängigkeit von Boden und Veranlagung. Z. Forstgenet. [now Silvae Genet.]2: 32–41.

    Google Scholar 

  • Müller, N. J. C. 1872–1877. Beiträge zur Entwicklungsgeschichte der Baumkrone. Botanische Untersuchungen, Heidelberg [†],1: 427–576 + pl. XVIH–XXIX.

    Google Scholar 

  • Münch, E. 1937. Entstehungsursachen und Wirkung des Druck-und Zugholzes der Bäume. Forstliche Wochenschrift Silva, Tübingen [†],25: 337–341, 345–350.

    Google Scholar 

  • — 1937–1938. Statik und Dynamik des schraubigen Baues der Zellwand, besonders des Druck-und Zugholzes. Flora, Jena,32: 357–424.

    Google Scholar 

  • — 1938. Untersuchungen über die Harmonie der Baumgestalt. Jahrb. wiss. Botan.86: 581–673.

    Google Scholar 

  • — 1940. Weitere Untersuchungen über Druckholz und Zugholz. Flora, Jena,34:45–57.

    Google Scholar 

  • Murakami, Y., andS. Matsunaka. 1963. Effect of gibberellin on components of phosphatase and peroxidase in rice plants. Plant Physiol.38: xliii-xliv.

    Google Scholar 

  • Naess-Schmidt, K., andB. Søegaard. 1960. Influence of grafting height on the development and form of the cion (in Danish, English summary). Forstl. Forsøgsv. Danm.26: 313–324.

    Google Scholar 

  • Naylor, J. M. 1958. Control of nuclear processes by auxin in axillary buds ofTradescantia paludosa. Canad. J. Bot.36: 221–232 + 1 pl.

    Google Scholar 

  • Nečesaný, V. 1955a. Anatomy of reaction wood of hardwoods and submicroscopic morphology of its cell walls (in Czech, English summary). Přírodovědecký Sbornik Ostravského Kraje, Opava,16: 184–202 + 15 pl.

    Google Scholar 

  • — 1955b. Occurrence of reaction wood from the taxonomic point of view (in Czech, English summary). Sborník Vysoké Školy Zemědělské a Lesnické Fakulty, Brno, Sec. C,3: 131–149.

    Google Scholar 

  • — 1955c. Relationship between the reaction woods of hardwoods and conifers (in Czech, German summary). Biológia10: 642–647.

    Google Scholar 

  • — 1955d. Submicroscopic morphology of the cell walls of the reaction wood of conifers (in Czech, German summary). Biológia10: 647–659

    Google Scholar 

  • — 1956. Structure of reaction wood (in Czech, English summary). Preslia28: 61–65 + pl. VII-VIII.

    Google Scholar 

  • — 1957. Nature of the so-called tertiary lamella. Svensk PappTidn.60: 10–16.

    Google Scholar 

  • — 1958. Effect of β-indoleacetic acid on the formation of reaction wood. Phyton, Buenos Aires,11: 117–127.

    Google Scholar 

  • Nmec, B. 1901. Ueber die Wahrnehmung des Schwerkraftreizes bei den Pflanzen. Jahrb. wiss. Botan.36: 80–178.

    Google Scholar 

  • Nitsch, J. P., andC. Nitsch. 1956. Studies on the growth of coleoptile and first internode sections. New, sensitive, straight-growth test for auxins. Plant Physiol.31: 94–111.

    PubMed  CAS  Google Scholar 

  • Noll. 1894. Ueber eine neu entdeckte Eigenschaft des Wurzelsystems (Exotropie oder Aussenwendigkeit). Sitzungsberichte der niederrheinischen Gesellschaft für Naturund Heilkunde zu Bonn1894 (Pt. A): 34–36.

    Google Scholar 

  • Nördlinger. 1878. Liegt an schiefen Bäumen das bessere Holz auf der dem Himmel zugekehrten oder auf der unteren Seite? Cbl. ges. Forstw.4: 246–247, 494–495.

    Google Scholar 

  • Odland, M. L., andD. W. Groff. 1963. Linkage of vine type and geotropic response with sex forms in cucumbersCucumis sativus L. Proc. Amer. Soc. Hort. Sci.82: 358–369.

    Google Scholar 

  • Ollinmaa, P. J. 1955. On the structure and properties of compression wood (in Finnish, English summary). Pap. ja Puu37: 544–549.

    CAS  Google Scholar 

  • -. 1956. On the anatomic structure and properties of tension wood inBetula (in Finnish, English summary). Acta For. Fenn.64 (3): 263 pp. (No. 3 is dated 1955.)

  • -. 1961. Study on reaction wood (in Finnish, English summary). Acta For. Fenn.72 (1): 54 pp. (No. 1 is dated 1959.)

  • Onaka, F. 1935. On the arrangement of compression wood in conifers (in Japanese). J. Jap. For. Soc.17: 680–693.

    Google Scholar 

  • — 1937. On the occurrence of gelatinous layers in dicotyledonous woods (in Japanese). J. Jap. For. Soc.19: 639–653

    Google Scholar 

  • — 1940. On the influence of auxin on radial growth, particularly regarding compression wood formation in trees (in Japanese). J. Jap. For. Soc.22: 573–580.

    Google Scholar 

  • — 1942. Relation between the distribution of auxin and the radial growth of trees (in Japanese). J. Jap. For. Soc.24: 341–355.

    Google Scholar 

  • -. 1949. Studies on compression wood and tension wood (in Japanese, English summary). Mokuzai Kenkyu, Bull. No. 1, 88 pp.

  • — 1950a. Effects of defoliation, disbudding, girdling, and other treatments on growth, especially radial growth, in evergreen conifers (in Japanese, English summary). Bull. Kyoto Univ. For.18: 55–95.

    Google Scholar 

  • — 1950b. Longitudinal distribution of radial increments in trees (in Japanese, English summary). Bull. Kyoto Univ. For.18: 1–53.

    Google Scholar 

  • Oserkowsky, J. 1942. Polar and apolar transport of auxin in woody stems. Amer. J. Bot.29: 858–866.

    Google Scholar 

  • Overbeek, J. van. 1936. “Lazy,” an a-geotropic form of maize: “gravitational indifference” rather than structural weakness accounts for prostrate growth-habit of this form. J. Hered.27: 93–96.

    Google Scholar 

  • —,G. D. Olivo, andE. M. Santiago de Vázquez. 1944–1945. Rapid extraction method for free auxin and its application in geotropic reactions of bean seedlings and sugar-cane nodes. Bot. Gaz.106: 440–451.

    Google Scholar 

  • Palmer, J. H. 1956. Nature of the growth response to sunlight shown by certain stoloniferous and prostrate tropical plants. New Phytol.55: 346–355.

    Google Scholar 

  • Patel, R. N. 1963. Spiral thickening in normal and compression wood. Nature, London,198: 1225–1226.

    Google Scholar 

  • Paul, B. H. 1941. Thinning and quality: sudden acceleration of diameter growth in vertical and leaning longleaf pine trees in relation to quality of lumber. Sth. Lumberm.163 (2057): 203–206.

    Google Scholar 

  • -. 1957. Juvenile wood in conifers. U. S. For. Prod. Lab., Madison, Report No. 2094, 8 pp.

  • —, andG. Meagher. 1949. Growth-quality study of ponderosa pine. West Coast Lumberman [now For. Ind., Portland]76 (6): 82, 84, 93–94.

    Google Scholar 

  • Pemberton, C. C. 1923. Natural root graft and the overgrowth of stumps of conifers. Natural graftage. Natural History, New York,23: 182–191.

    Google Scholar 

  • — 1929. Revolving growth movement in conifers. Univ. of Washington, Forest Club Quarterly8 (4): 4–9.

    Google Scholar 

  • Pennington, L. H. 1910. Effect of longitudinal compression upon the production of mechanical tissue in stems. Bot. Gaz.50: 257–284.

    Google Scholar 

  • Perem, E. 1960. Effect of compression-wood on the mechanical properties of white spruce and red pine. For. Prod. Lab., Canada, Technical Note No. 13, 22 pp.

  • Perry, T. O. 1960. Inheritance of crooked stem form in loblolly pine (Pinus taeda L.). J. For.58: 943–947.

    Google Scholar 

  • Petersen, O. G. 1914. Changes in wood structure accompanying the erection of branches ofPicea abies (in Danish). Bot. Tidsskr.33: 354–361.

    Google Scholar 

  • Petrić, B. 1962. Variations in structure of normal and compression wood ofAbies alba (in Serbo-Croatian, English summary). Drvna Ind.13: 12–23.

    Google Scholar 

  • Phillips, E. W. J. 1940. Comparison of forestand plantation-grown African pencil cedar (Juniperus procera Höchst.) with special reference to the occurrence of compression wood. Emp. For. J. [now Emp. For. Rev.]19: 282–288 + 2 figs.

    Google Scholar 

  • — 1954. Influence of leaf activity on the composition of the wood cell wall. Nature, London,174: 85–86.

    Google Scholar 

  • Phillips, M., andM. J. Goss. 1935. Composition of the leaves and stalks of barley at successive stages of growth, with special reference to the formation of lignin. Journal of Agricultural Research, Washington, D. C. [†],51: 301–319.

    CAS  Google Scholar 

  • Pilet, P.-E. 1950. Nouvelle contribution à l’étude du géotropisme des étamines d’Hostacaerulea Tratt. Ber. Schweiz, botan. Ges.50: 5–14.

    Google Scholar 

  • Pilet, P. E. 1953. Etude physiologique du parasitisme de l’Uromycespisi (Pers.) de By, sur l’Euphorbiacyparissias L. Experientia, Basle,9: 300–303.

    Google Scholar 

  • Pillow, M. Y. 1930. Compression wood as a cause of distortion of softwood lumber. J. For.28: 1173–1177

    Google Scholar 

  • — 1931. Compression wood records hurricane. J. For.29: 575–578.

    Google Scholar 

  • — 1941. New method of detecting compression wood. J. For.39: 385–387.

    Google Scholar 

  • —, andM. W. Bray. 1935. Properties and sulphate pul** characteristics of compression wood. Paper Trade Journal101 (26): 31–34.

    CAS  Google Scholar 

  • -, andR. F. Luxford. 1937. Structure, occurrence, and properties of compression wood. U. S. Dep. Agric, Technical Bull. No. 546, 32 pp. + 9 pl.

  • —,E. R. Schaefer, andJ. C. Pew. 1936. Occurrence of compression wood in black spruce and its effect on properties of ground wood pulp. Paper Trade Journal102 (16): 36–38.

    CAS  Google Scholar 

  • Plumb, G. H. 1953. Formation and development of the Norway spruce gall caused byAdelges abietis L. Conn. Agr. Exp. Sta., New Haven, Bull. No. 566, 77 pp.

  • Posnette, A. F., andR. Cropley. 1953. Distribution of rubbery wood virus in apple varieties and rootstocks. Ann. Rept. East Mailing Res. St., Kent,1953: 150–153.

    Google Scholar 

  • Potter, L. D., andD. L. Green. 1964. Ecology of ponderosa pine in western North Dakota. Ecology45: 10–23.

    Google Scholar 

  • Preston, A. P., andH. W. B. Barlow. 1950. Use of growth substances to widen crotch angles. Ann. Rept. East Malling Res. St., Kent,1950: 76–79 + 2 ph.

    Google Scholar 

  • Priestley, J. H., andD. Tong. 1925–1929. Effect of gravity upon cambial activity in trees. Proc. Leeds Phil. Lit. Soc., Sci. Sect.,1: 199–208 + 1 pl.

    Google Scholar 

  • Raunecker, H. 1957. Beobachtungen über den Drehwuchs der Kiefer. Holz-Zbl.83 (100): 1221.

    Google Scholar 

  • Rawitscher, F. 1932. Geotropismus der Pflanzen. G. Fischer, Jena, 420 pp.

  • — 1937. Geotropism in plants. Bot. Rev.3: 175–194.

    CAS  Google Scholar 

  • Ray, P. M. 1960. Destruction of indoleacetic acid.III. Relationships between peroxidase action and indoleacetic acid oxidation. Arch. Biochem.87: 19–30.

    PubMed  CAS  Google Scholar 

  • Rehder, A. 1949. Bibliography of cultivated trees and shrubs hardy in the cooler temperate regions of the northern hemisphere. Arnold Arboretum, Jamaica Plain, Mass., 825 pp.

  • Rendle, B. J. 1937. Gelatinous wood fibers. Trop. Woods [†]52: 11–19.

    Google Scholar 

  • — 1956. Compression wood: natural defect of softwoods. Wood21: 120–123.

    Google Scholar 

  • — 1960. Juvenile and adult wood. J. Inst. Wood Sci.5: 58–61.

    Google Scholar 

  • Renvall, A. 1923. Beobachtungen ueber die Exzentrizität des lappländischen Kiefernstammes. Acta For. Fenn.26 (4): 14 pp.

  • Rhodes, A. D. 1963. Reducing trunk malformation caused by injury to eastern white pine by the white pine weevil. J. For.61: 374–375, 378.

    Google Scholar 

  • Richardson, S. D. 1957. Studies of root growth inAcer saccharinum L. VI. Further effects of the shoot system on root growth. Proc. Koninkl. Ned. Akad. Wetenschap., Ser. C,60: 624–629 + 2 pl.

    Google Scholar 

  • — 1958. Effect of IAA on root development ofAcer saccharinum L. Physiol. Plant., Copenhagen,11: 698–709.

    CAS  Google Scholar 

  • Robards, A. W., andM. J. Purvis. 1964. Chlorazol black E as a stain for tension wood. Stain Technol.39: 309–315.

    CAS  Google Scholar 

  • Roberts, L. W., andD. E. Fosket. 1962. Geotropic stimulation: effects on wound vessel differentiation. Science138: 1264–1265.

    PubMed  Google Scholar 

  • Romberger, J. A. 1963. Meristems, growth, and development in woody plants: analytical review of anatomical, physiological, and morphogenic aspects. U. S. Dep. Agric., Technical Bull. No. 1293, 214 pp.

  • Rothe, G. 1930. Druckfestigkeit und Druckelastizität des Rotund Weissholzes der Fichte. Tharandter forstliches Jahrbuch [†]81: 204–231.

    Google Scholar 

  • Rufelt, H. 1957a. Influence of temperature on the geotropic reactions of wheat roots. Physiol. Plant., Copenhagen,10: 485–499.

    Google Scholar 

  • — 1957b. Influence of the composition of the nutrient solution on the geotropic reactions of wheat roots. Physiol. Plant., Copenhagen,10: 373–396.

    CAS  Google Scholar 

  • — 1961. Geotropism in roots and shoots. Annual Review of Plant Physiology12: 409–430.

    CAS  Google Scholar 

  • Ruhland, W. (Ed.). 1962. Physiology of movements. Movements due to the effects of temperature, gravity, chemical factors and internal factors. Encyclopedia of plant physiology, vol. 17, pt. 2. Springer-Verlag, Berlin, 1174 pp.

  • Saarnijoki, S. 1953–1955. Über ein Gruppenvorkommen von Trauerfichten,Picea abies (L.) H. Karst, f.pendula Jacq. & Hérincq. Commun. Inst. For. Fenn.42 (3): 42 pp.

  • Sanio, K. 1873–1874. Anatomie der gemeinen Kiefer (Pinus silvestris L.). II. Jahrb. wiss. Botan.9: 50–126 + 10 pl. + 1 tbl.

    Google Scholar 

  • Sato, I. 1956. Studies on the georeaction shown in the axes of some herbaceous plants. Japan. J. Botany15: 249–269.

    Google Scholar 

  • Schacht, H. 1862. Ueber den Stamm und die Wurzel derAraucaria brasiliensis. Botanische Zeitung, Berlin [†],20: 409–414, 417–423 + pl. XIII-XIV.

    Google Scholar 

  • Schley, E. O. 1920. Geo-presentation and geo-reaction. Bot. Gaz.70: 69–81.

    CAS  Google Scholar 

  • Schmidt, W. 1940. Knospenund Triebschädigungen in Kiefernkulturen und ihr Einfluss auf die Wertholzerzeugung. Forstarchiv16: 67–71, 121–130.

    Google Scholar 

  • Schmitz, H. 1932–1933. Über Wuchsstoff und Geotropismus bei Gräsern. Planta19: 614–635.

    Google Scholar 

  • Schniewind, A. P. 1962. Horizontal specific gravity variation in tree stems in relation to their support function. For. Sci.8: 111–118.

    Google Scholar 

  • Scholander, P. F., E. Hemmingsen, andW. Garey. 1961. Cohesive lift of sap in the rattan vine. Science134: 1835–1838.

    PubMed  Google Scholar 

  • Schöldéen, C., andH. Burström. 1960. Physiological studies of an ageotropic pea mutant. Physiol. Plant., Copenhagen,13: 831–838.

    Google Scholar 

  • Schrank, A. R. 1950. Plant tropisras. Annual Review of Plant Physiology1: 59–74.

    Google Scholar 

  • Schreiner, E. J. 1958. Possibilities for genetic improvement in the utilization potentials of forest trees. Silvae Genet.7: 122–128.

    Google Scholar 

  • Schröck, O. 1958. Untersuchung der phototropischen Reaktion als Auslesemethode bei Kiefernsämlingen auf Gradschäftigkeit. Züchter28: 320–323.

    Google Scholar 

  • Schröter, C. 1934a. Uebersicht über die Modifikationen der Fichte. Schweiz. Z. Forstw.85: 33–35, 37–46.

    Google Scholar 

  • — 1934b. Uebersicht über die Mutationen der Fichte nach Wuchs und Rinde. Schweiz. Z. Forstw.85: 46–57, 36.

    Google Scholar 

  • Schubert, W. J., andF. F. Nord. 1957. Lignification. Advances in Enzymol.18: 349–378.

    CAS  Google Scholar 

  • Schwabe, W. W. 1950. Factors controlling flowering of theChrysanthemum. I. Effects of photoperiod and temporary chilling. J. Exp. Bot.1: 329–343 + 2 pl.

    Google Scholar 

  • Schwendener, S. 1874. Mechanische Princip im anatomischen Bau der Monocotylen mit vergleichenden Ausblicken auf die übrigen Pflanzenklassen. Wilhelm Engelmann, Leipzig, 179 pp. + 14 pl.

  • Schwerin, G. 1958. Chemistry of reaction wood. II. Polysaccharides ofEucalyptus goniocalyx andPinus radiata. Holzforschung, Berlin,12 (2): 43–48.

    CAS  Google Scholar 

  • Scott, D. R. M., andS. B. Preston. 1955. Development of compression wood in eastern white pine through the use of centrifugal force. For. Sci.1: 178–182.

    Google Scholar 

  • Scott, T. K., andW. P. Jacobs. 1963. Auxin inColeus stems: limitation of transport at higher concentrations. Science139: 589–590.

    PubMed  CAS  Google Scholar 

  • Scurfield, G., andD. E. Bland. 1963. Anatomy and chemistry of “rubbery” wood in apple var. Lord Lambourne. J. Hort. Sci.38: 297–306 + 2 pl.

    CAS  Google Scholar 

  • —, andA. B. Wardrop. 1962. Nature of reaction wood. VI. Reaction anatomy of seedlings of woody perennials. Aust. J. Bot.10 (2): 93–105 + 8 pl.

    Google Scholar 

  • Seidel, K. 1957. Umstimmung des negativen Geotropismus. Naturwissenschaften44: 289.

    Google Scholar 

  • Shepard, H. B., andI. W. Bailey. 1914. Some observations on the variation in length of coniferous fibers. Proc. Soc. Amer. For.9: 522–527.

    Google Scholar 

  • Siebers, A. M. 1960. Detection of tension wood with fluorescent dyes. Stain Technol.35: 247–251.

    PubMed  CAS  Google Scholar 

  • Siegel, S., P. Frost, andF. Porto. 1960. Effects of indoleacetic acid and other oxidation regulators on in vitro peroxidation and experimental conversion of eugenol to lignin. Plant Physiol.35: 163–167.

    CAS  Google Scholar 

  • Siegel, S. M., andA. W. Galston. 1955. Peroxide genesis in plant tissues and its relation to indoleacetic acid destruction. Arch. Biochem.54: 102–113.

    PubMed  CAS  Google Scholar 

  • —, andR. L. Weintraub. 1952. Inactivation of 3-indoleacetic acid by peroxides. Physiol. Plant., Copenhagen,5: 241–247.

    CAS  Google Scholar 

  • Sinnott, E. W. 1951. Morphogenetic significance of reaction wood. Science114: 487–488.

    Google Scholar 

  • — 1952. Reaction wood and the regulation of tree form. Amer. J. Bot.39: 69–78.

    Google Scholar 

  • — 1960. Plant morphogenesis. McGraw-Hill, New York, 550 pp.

    Google Scholar 

  • Skoog, F., andC. O. Miller. 1957. Chemical regulation of growth and organ formation in plant tissues culturedin vitro. Symp. Soc. Exptl. Biol.11: 118–131 + 9 pl.

    Google Scholar 

  • —, andK. V. Thimann. 1934. Further experiments on the inhibition of the development of lateral buds by growth hormone. Proc. Natl. Acad. Sci. U. S.20: 480–485.

    CAS  Google Scholar 

  • —, andC. Tsui. 1948. Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Amer. J. Bot.35: 782–787.

    CAS  Google Scholar 

  • Smith, H., andP. F. Wareing. 1964a. Gravimorphism in trees. II. Effect of gravity on bud-break in osier willow. Ann. Bot., London,28: 283–295.

    Google Scholar 

  • —— 1964b. Gravimorphism in trees. III. Possible implication of a root factor in the growth and dominance relationships of the shoots. Ann. Bot., London,28: 297–309.

    Google Scholar 

  • Smith, M. E., andN. S. Bayliss. 1942. Necessity of zinc forPinus radiata. Plant Physiol,17: 303–310.

    PubMed  CAS  Google Scholar 

  • Snow, R. 1939. Second factor involved in inhibition by auxin in shoots. New Phytol.38: 210–223.

    CAS  Google Scholar 

  • Snyder, E. B. 1961. Measuring branch characters of longleaf pines. Sth. For. Exp. Sta., Occasional Paper No. 184, [5] pp.

  • Söding, H. 1936. Über den Einfluss von Wuchsstoff auf das Dickenwachstum der Bäume. Ber. dtsch. bot. Ges.54: 291–304 + pl. XXX-XXXII.

    Google Scholar 

  • — 1936–1937. Wuchsstoff und Kambiumtätigkeit der Bäume. Jahrb. wiss. Botan.84: 639–670.

    Google Scholar 

  • Somerville, andA. G. Harper. 1914. Experiments on eccentric growth of ash. Quart. J. For.8: 218–229 + 1 pl.

    Google Scholar 

  • Sondheimer, E., andW. G. Simpson. 1962. Lignin abnormalities of “rubbery apple wood.” Canad. J. Biochem. Physiol.40: 841–846.

    CAS  Google Scholar 

  • Sonntag, P. 1904. Ueber die mechanischen Eigenschaften des Rothund Weissholzes der Fichte und anderer Nadelhölzer. Jahrb. wiss. Botan.39: 71–105.

    Google Scholar 

  • Sorensen, R. W., andB. F. Wilson. 1964. Position of eccentric stem growth and tension wood in leaning red oak trees. Harv. For. Pap. No. 12, 10 pp.

  • Sorokin, H. P., S. N. Mathur, andK. V. Thimann. 1962. Effects of auxins and kinetin on xylem differentiation in the pea epicotyl. Amer. J. Bot.49: 444–454.

    CAS  Google Scholar 

  • Sperlich, A. 1912. Über Krümmungsursachen bei Keimstengeln und beim Monokotylenkeimblatte nebst Bemerkungen über den Phototropismus der positiv geotropischen Zonen des Hypocotyls und über das Stemmorgan bei Cucurbibitaceen. Jahrb. wiss. Botan.50: 502–653.

    Google Scholar 

  • Spurr, S. H., andR. B. Friend. 1941. Compression wood in weeviled northern white pine. J. For.39: 1005–1006.

    Google Scholar 

  • —, andM. J. Hyvärinen. 1954. Compression wood in conifers as a morphogenetic phenomenon. Bot. Rev.20: 551–560

    Google Scholar 

  • Stafford, H. A. 1960. Differences between lignin-like polymers formed by peroxidation of eugenol and ferulic acid in leaf sections ofPhleum. Plant Physiol.35: 108–114.

    PubMed  CAS  Google Scholar 

  • Stecher, P. G.et al. (eds.). 1960. Merck index of chemicals and drugs. 7th ed. Merck & Co., Rahway, N. J., 1641 pp.

    Google Scholar 

  • Steward, F. C., andE. M. Shantz. 1959. Chemical regulation of growth. (Some substances and extracts which induce growth and morphogenesis.) Annual Review of Plant Physiology10: 379–404.

    Google Scholar 

  • Stockman, L., andE. Hägglund. 1948. Polysaccharides ofPicea abies wood and their reaction to hydrolysis (in Swedish, English summary). Svensk PappTidn.51: 269–274.

    CAS  Google Scholar 

  • Strasburger, E. 1891. Ueber den Bau und die Verrichtungen der Leitungsbahnen. G. Fischer, Jena, 1000 pp. + 5 pl.

  • Strydom, D. K., andH. T. Hartmann. 1960. Absorption, distribution, and destruction of indoleacetic acid in plum stem cuttings. Plant Physiol.35: 435–442.

    PubMed  CAS  Google Scholar 

  • Syre, H. 1938–1939. Untersuchungen über Statolithenstärke und Wuchsstoff an vorbehandelten Wurzeln. Z. Botan.33: 129–182.

    CAS  Google Scholar 

  • Tappi (Ed.) 1957. Biochemistry of lignin: papers presented at the third lignin roundtable ... Appleton, Wis., Sept. 24–26, 1956. Tappi40: 209–306.

  • —. 1959. Compression wood in pulpwood: tentative standard method T 20 m-59. Tappi42 (2): 144A-145A.

    Google Scholar 

  • Thimann, K. V., andA. L. Delisle. 1939. Vegetative propagation of difficult plants. J. Arnold Arbor.20: 116–136 + pl. 228–231.

    Google Scholar 

  • Tiemann, H. D. 1951. Wood technology: constitution, properties, and uses. 3rd ed. Pitman, New York, 396 pp.

    Google Scholar 

  • Tischendorf, W. 1943. Über Gesetzmässigkeit und Ursache der Exzentrizität von Baumquerflächen. Cbl. ges. Forstw.69: 33–54.

    Google Scholar 

  • Trendelenburg, R. 1932. Über die Eigenschaften des Rotoder Druckholzes der Nadelhölzer. Allg. Forstu. Jagdztg.108: 1–14.

    Google Scholar 

  • —, andH. Mayer-Wegelin. 1955. Holz als Rohstoff. 2nd ed. Carl Hanser, München, 541 pp.

    Google Scholar 

  • Troyer, J. R. 1961. Quantitative effects of eugenol on “lignin” and non-lignin fractions in leaf tissues of some woody plants. Arch. Biochem.95: 187–191.

    PubMed  CAS  Google Scholar 

  • Tsui, C. 1948. Role of zinc in auxin synthesis in the tomato plant. Amer. J. Bot.35: 172–179.

    CAS  Google Scholar 

  • Turkova, N. S. 1944. Growth reactions in plants under excessive watering. Dokl. Akad. Nauk SSSR42: 87–90.

    Google Scholar 

  • Ursprung, A. 1906a. Erklärungsversuche des exzentrischen Dickenwachstums. Biol. Cbl.26: 257–272.

    Google Scholar 

  • — 1906b. Untersuchungen über die Festigkeitsverhältnisse an exzentrischen Organen und ihre Bedeutung für die Erklärung des exzentrischen Dickenwachstums. Beihefte zum botanischen Centralblatt, Leipzig,19 (Pt. 1): 393–408.

    Google Scholar 

  • Vandevelde, R. 1957. Contribution to the study of reaction wood (in Flemish, English summary). Meded. Lab. Houttechnol., Gent,22: 751–768.

    Google Scholar 

  • VanHaverbeke, D. F., andJ. C. Barber. 1961. Less growth and no increased flowering from changing slash pine branch angle. Southeast. For. Exp. Sta., Research Note No. 167, 2 pp.

  • Vardar, Y. 1953. Study of the auxin factor in epinastic and hyponastic movements. Istanbul Üniv. Fen Fek. Mecmuasi, Ser. B,18: 317–352 + 2 pl.

    Google Scholar 

  • — 1955a. Change of the plagiotropic position in the peduncles with their age and its relation with IAA. Istanbul Üniv. Fen Fek. Mecmuasi, Ser. B,20: 199–224 + 3 pl.

    Google Scholar 

  • — 1955b. Study on the apical bud inhibition upon the lateral branches. Istanbul Üniv. Fen Fek. Mecmuasi, Ser. B,20: 245–256.

    Google Scholar 

  • Varty, I. W. 1956.Adelges insects of silver firs. Forestry Commission, Edinburgh, Bull. No. 26, 75 pp. + 70 pl.

  • Verner, L. 1938. Effect of a plant growth substance on crotch angles in young apple trees. Proc. Amer. Soc. Hort. Sci.36: 415–422.

    Google Scholar 

  • -. 1955. Hormone relations in the growth and training of apple trees. Idaho Univ., Agr. Expt. Sta., Res. Bull. No. 28, 31 pp.

  • Vikhrov, V. E. 1960. Movements of tree branches (in Russian). Priroda, Moskva,49 (1): 127–128.

    Google Scholar 

  • Vöchting, H. 1880. Ueber Spitze und Basis an den Pflanzenorganen. Botanische Zeitung, Berlin [†],38: 593–605, 609–618.

    Google Scholar 

  • — 1904. Über die Regeneration derAraucaria excelsa. Jahrb. wiss. Botan.40: 144–155.

    Google Scholar 

  • Volkert, E. 1941. Untersuchungen über Grösse und Verteilung des Raumgewichts in Nadelholzstämmen. Schriftenreihe der Hermann-Göring Akademie der deutschen Forstwissenschaft, Berlin [†],2: 133 pp. + 9 pl.

  • Wacek, A. v., O. Härtel, andS. Meralla. 1953. Über den Einfluss von Coniferinzusatz auf die Verholzung von Karottengewebe bei Kultur in vitro. Holzforschung, Berlin,7 (2/3): 58–62.

    CAS  Google Scholar 

  • Walker, R. B., S. P. Gessel, andP. G. Haddock. 1955. Greenhouse studies in mineral requirements of conifers: western red cedar. For. Sci.1: 51–60.

    CAS  Google Scholar 

  • Wallenstein, A., andL. S. Albert. 1963. Plant morphology: its control inProserpinaca by photoperiod, temperature, and gibberellic acid. Science140: 998–1000.

    PubMed  Google Scholar 

  • Wardrop, A. B. 1949. Influence of pressure on the cell wall organisation of conifer tracheids. Proc. Leeds Phil. Lit. Soc., Sci. Sect.,5 (2): 128–135 + pl. VII.

    Google Scholar 

  • — 1956. Nature of reaction wood. V. Distribution and formation of tension wood in some species ofEucalyptus. Aust. J. Bot.4: 152–166 + 3 pl.

    Google Scholar 

  • — 1957. Phase of lignification in the differentiation of wood fibers. Tappi 40: 225–243.

    CAS  Google Scholar 

  • — 1964a. Reaction anatomy of arborescent angiosperms.In: Zimmermann, M. H. (ed.) Formation of wood in forest trees. Academic Press, New York, 562 pp. (pp. 405–456).

    Google Scholar 

  • — 1964b. Structure and formation of the cell wall in xylem.In: Zimmermann, M. H. (ed.) Formation of wood in forest trees. Academic Press, New York, 562 pp. (pp. 87–134).

    Google Scholar 

  • —, andD. E. Bland. 1958. Process of lignification in woody plants. Proc. Intern. Congr. Biochem. (Vienna)4 (vol. 2): 92–116 + 22 figs.

    Google Scholar 

  • —, andH. E. Dadswell. 1948. Nature of reaction wood. I. Structure and properties of tension wood fibres. Aust. J. Sci. Res., Ser. B [now Aust. J. Biol. Sci.]1: 3–16 + 4 pl.

    Google Scholar 

  • ——. 1950. Nature of reaction wood. II. Cell wall organization of compression wood tracheids. Aust. J. Sci. Res., Ser. B [now Aust. J. Biol. Sci.]3: 1–13 + 2 pl.

    Google Scholar 

  • ——. 1952. Nature of reaction wood. III. Cell division and cell wall formation in conifer stems. Aust. J. Sci. Res., Ser. B [now Aust. J. Biol. Sci.]5: 385–398 + 4 pl.

    Google Scholar 

  • ——. 1955. Nature of reaction wood. IV. Variations in cell wall organization of tension wood fibres. Aust. J. Bot.3: 177–189 + 7 pl.

    Google Scholar 

  • —, andE. Scaife. 1956. Occurrence of peroxidase in tension wood of angiosperms. Nature, London,178: 867.

    CAS  Google Scholar 

  • Wareing, P. F. 1951. Growth studies in woody species. IV. Initiation of cambial activity in ring-porous species. Physiol. Plant., Copenhagen,4: 546–562.

    Google Scholar 

  • — 1958. Interaction between indole-acetic acid and gibberellic acid in cambial activity. Nature, London,181: 1744–1745.

    CAS  Google Scholar 

  • — 1959. Problems of juvenility and flowering in trees. J. Linn. Soc. (Bot.)56: 282–289.

    Google Scholar 

  • —,C. E. A. Hanney, andJ. Digby. 1964. Role of endogenous hormones in cambial activity and xylem differentiation.In: Zimmermann, M. H. (ed.) Formation of wood in forest trees. Academic Press, New York, 562 pp. (pp. 323–344).

    Google Scholar 

  • —,T. A. A. Nasr. 1961. Gravimorphism in trees. I. Effects of gravity on growth and apical dominance in fruit trees. Ann. Bot., London,25: 321–340.

    Google Scholar 

  • Warner, T. 1928. Über den Einfluss der geotropischen Reizung auf den Zuckerund Säuregehalt von Sprossen. Jahrb. wiss. Botan.68: 431–497.

    CAS  Google Scholar 

  • Watson, A. J. 1956. Pul** characteristics of eucalypt tension wood. Proc. Aust. Pulp Pap. Ind. Tech. Ass. [now APPITA, Melbourne]10: 43–59.

    CAS  Google Scholar 

  • —, andH. E. Dadswell. 1957. Paper making properties of compression wood fromPinus radiata. APPITA, Melbourne,11 (3): 56–70.

    Google Scholar 

  • Wellwood, R. W. 1956. Some effects of dwarf mistletoe on western hemlock. For. Chron.32: 282–296.

    Google Scholar 

  • Went, F. W. 1939. Some experiments on bud growth. Amer. J. Bot.26: 109–117.

    CAS  Google Scholar 

  • — 1941–1942. Polarity of auxin transport in invertedTagetes cuttings. Bot. Gaz.103: 386–390.

    CAS  Google Scholar 

  • —, andK. V. Thimann. 1937. Phytohormones. Macmillan, New York, 294 pp.

    Google Scholar 

  • Wergin, W. 1957. Über Entstehung und Aufbau von Reaktionsholzzellen. I. Ernährungsphysiologische Versuche zur Bildung von Zugholzzellen bei Sämlingen der Rosskastanie. Faserforsch. Textiltech.8: 257–262.

    Google Scholar 

  • —, andG. Casperson. 1961. Über Entstehung und Aufbau von Reaktionsholzzellen. II. Morphologie der Druckholzzellen vonTaxus baccata L. Holzforschung, Berlin,15 (2): 44–49.

    Google Scholar 

  • Wershing, H. F. andI. W. Bailey. 1942. Seedlings as experimental material in the study of “redwood” in conifers. J. For.40: 411–414.

    Google Scholar 

  • West Coast Lumberman. 1924. Spruce limb serves as humidity indicator. West Coast Lumberman [now For. Ind., Portland]45 (536): 26b. (This issue of 1 Feb. 1924 is incorrectly marked vol. 44.)

    Google Scholar 

  • Westing, A. H. 1959a. Effect of gibberellin on conifers: generally negative. J. For.57: 120–122.

    CAS  Google Scholar 

  • -. 1959b. Studies on the physiology of compression wood formation inPinus L. Yale Univ., New Haven, Ph.D. thesis, 177 pp.

  • — 1960a. Asymmetric distribution of a substance found in horizontally displaced eastern white pine leaders which reacts with Salkowski reagent. For. Sci.6: 240–245.

    CAS  Google Scholar 

  • — 1960b. Peroxidase distribution in geotropically stimulated candles ofPinus strobus L. Proc. Indiana Acad. Sci.70: 79–82.

    Google Scholar 

  • — 1960c. Peroxidase distribution in the leaders of erect and inclinedPinus strobus seedlings. Amer. J. Bot.47: 609–612.

    CAS  Google Scholar 

  • — 1961a. Changes in radial symmetry in the leaders of eastern white pine following inclination. J. For.59: 17–19.

    Google Scholar 

  • — 1961b. Influence of orientation on the growth rate of tree stems.In: Brandwein, P. F.et al. (eds.) High school biology: biological investigations for secondary school students. American Institute of Biological Sciences, Washington, D. C., 402 pp. (pp. 373–374). [Revised edition in: Lanham, U. (ed.). 1965. Research problems in biology: investigations for students. Ser. 3. Doubleday & Co., Garden City, New York, 210 pp. (pp. 167–170).]

    Google Scholar 

  • — 1961c. Plant growth promoting substance found in an acorn weevil of the family Curculionidae. Proc. Indiana Acad. Sci.71: 94–95.

    CAS  Google Scholar 

  • — 1962a. Bioassay methods for geotropically active growth substances. Proc. Indiana Acad. Sci.72: 115–117.

    Google Scholar 

  • — 1962b. Hormonal activity related to geotropic reactions inPinus strobus L. Plant Physiol.37: xvii.

    Google Scholar 

  • — 1962c. Physiological comparisons between a fast-growing and a slow-growing red pine. Proc. Central States Forest Tree Improvement Conference3: 51–56.

    Google Scholar 

  • — 1964. Geotropism: its orienting force. Science 144: 1342–1344.

    PubMed  Google Scholar 

  • — 1965. Compression wood in the regulation of branch angle in gymnosperms. Bull. Torrey Bot. Cl.92: 62–66.

    Google Scholar 

  • -, andH. Schulz. 1965. Erection of a leaning eastern hemlock tree. For. Sci.11: [in press]

  • Wetmore, R. H., andJ. P. Rier. 1963. Experimental induction of vascular tissues in callus of angiosperms. Amer. J. Bot.50: 418–430.

    CAS  Google Scholar 

  • — andS. Sorokin. 1955. On the differentiation of xylem. J. Arnold Arbor.36: 305–317 + 6 pl.

    Google Scholar 

  • Wettstein, R. 1935. Handbuch der systematischen Botanik. F. Deuticke, Leipzig, 1152 pp.

  • White, D. J. B. 1962. Tension wood in a branch ofSassafras. J. Inst. Wood Sci.10: 74–80.

    Google Scholar 

  • White, J. 1908. Formation of red wood in conifers. Proc. Roy. Soc. Victoria, N.S.,20 (2): 107–124.

    Google Scholar 

  • Whitmore, F. W., andR. Zahner. 1964. Indoleacetic acid synthesis by polyphenols in the extraction ofPinus phloem and cambial tissue. Science145: 166–167.

    PubMed  CAS  Google Scholar 

  • Wickson, M., andK. V. Thimann. 1960. Antagonism of auxin and kinetin in apical dominance. II. Transport of IAA in pea stems in relation to apical dominance. Physiol. Plant., Copenhagen,13: 539–554.

    CAS  Google Scholar 

  • Wiesner, J. 1892a. Ueber das ungleichseitige Dickenwachsthum des Holzkörpers in Folge der Lage. Ber. dtsch. bot. Ges.10: 605–610.

    Google Scholar 

  • — 1892b. Untersuchungen über den Einfluss der Lage auf die Gestalt der Pflanzenorgane. I. Anisomorphie der Pflanze. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, Wien, Pt. 1,101: 657–705.

    Google Scholar 

  • Wilkins, M. B. 1965. Red light and the geotropic response of theAvena coleoptile. Plant Physiol.40: 24–34.

    PubMed  CAS  Google Scholar 

  • —, andM. H. M. Goldsmith. 1964. Effects of red, far-red, and blue light on the geotropic response of coleoptiles ofZea mays. J. Exp. Bot.15: 600–615.

    Google Scholar 

  • Wilson, B. F. 1962. Survey of the incidence of ring shake in eastern hemlock. Harv. For. Pap. No. 5, 11 pp.

  • — 1964. Model for cell production by the cambium of conifers.In: Zimmermann, M. H. (ed.) Formation of wood in forest trees. Academic Press, New York, 562 pp. (pp. 19–36).

    Google Scholar 

  • Wodzicki, T. 1961a. Investigations on the kind ofLarix polonica Rac. wood formed under various photoperiodic conditions. II. Effect of different light conditions on wood formed by seedlings grown in greenhouse. Acta Societatis Botanicorum Poloniae, Warsaw,30: 111–131.

    Google Scholar 

  • — 1961b. Investigation on the kind ofLarix polonica Rac. wood formed under various photoperiodic conditions. III. Effect of decapitation and ringing on the wood formation and cambial activity. Acta Societatis Botanicorum Poloniae, Warsaw,30: 293–306 + 1 pl.

    Google Scholar 

  • Wolf, F. T. 1956. Production of indole acetic acid by cedar apple rust fungus, and its identification by paper chromatography. Phytopath. Z.26: 219–223.

    CAS  Google Scholar 

  • Yamai, R. 1951. Mechanical model of the cell wall of compression wood (in Japanese, English summary). Kyushu Univ., Faculty of Agriculture, Science Bull.13: 234–237.

    Google Scholar 

  • Zahner, R., andF. W. Whitmore. 1960. Early growth of radically thinned loblolly pine. J. For.58: 628–634.

    Google Scholar 

  • Zehendner, S. M. 1924. Über Regeneration und Richtung der Seitenwurzeln. Flora, Jena,117: 301–343.

    Google Scholar 

  • Zherebov, L. P. 1946. Mechanical function of the chemical constituents of wood (in Russian). Bumazhn. Prom.21: 14–26.

    CAS  Google Scholar 

  • Ziegler, H. 1951. Über den Einfluss der tropistichen Reizung auf den Stoffwechsel der gereizten Organe. I. Zuckergehalt und die Atmungsintensität geotropisch gereizter Sprosse. Z. Naturforsch.6b: 200–206.

    Google Scholar 

  • Zimmermann, M. H. (Ed.). 1964. Formation of wood in forest trees. Academic Press, New York, 562 pp.

    Google Scholar 

  • Zimmermann, W. A. 1936–1937. Untersuchungen über die räumliche und zeitliche Verteilung des Wuchsstoffes bei Bäumen. Z. Botan30: 209–252.

    CAS  Google Scholar 

  • Zobel, B. J., andA. E. Haucht, Jr. 1962. Effect of bole straightness on compression wood of loblolly pine. N. Carolina State Col., School of Forestry, Raleigh, Technical Report No. 15, 14 pp.

  • Zobel, B., E. Thorbjornsen, andF. Henson. 1960. Geographic, site and individual tree variation in wood properties of loblolly pine. Silvae Genet.9: 149–158.

    Google Scholar 

  • —,C. Webb, andF. Henson. 1959. Core or juvenile wood of loblolly and slash pine trees. Tappi42: 345–356.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Prepared while the author was a Charles Bullard fellow at Harvard University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westing, A.H. Formation and function of compression wood in gymnosperms. Bot. Rev 31, 381–480 (1965). https://doi.org/10.1007/BF02859131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02859131

Keywords

Navigation