Log in

Structural determinants of activity at the GABAB receptor

A comparison of phosphoethanolamine and related GABA analogs

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Phosphoethanolamine is a phosphomonoester that is reduced in Alzheimer disease brain. Despite its close structural similarity to GABA and the GABAB partial agonist 3-aminopropylphosphonic acid, phosphoethanolamine binds very poorly to GABAB receptors (IC50=7.5±0.8 mM). In this study, we examined whether the marked decrease in binding affinity associated with the presence of an ester oxygen in place of the α-CH2 group of GABAergic compounds also occurred in sulfonates and used high resolution solution NMR and molecular mechanics calculations to determine the structural basis of this decrease in activity. The sulfonate analog of GABA, 3-aminopropylsulfonic acid, became >2500-fold less potent when the α-CH2 was replaced by an ester oxygen. Structural studies showed that the active α-CH2 compounds (GABA, 3-aminopropylphosphonic acid, and 3-aminopropylsulfonic acid) prefer a fully extended conformation. The inactive compounds, phosphoethanolamine and ethanolamine-O-sulfate, exist in a gauche conformation around the Cβ–Cγ bond. This study, which suggests conformational differences, may explain how PE can be so efficiently excluded from GABAB receptors, despite being present in millimolar concentrations in brain. Exclusion of phosphoethanolamine from GABAB receptors may be an important physiologic control, mechanism in the regulation of inhibitory neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3-APP:

3-aminopropylphosphonic acid

3-APS:

3-aminopropylsulfonic acid

EOS:

ethanolamine-O-sulfate

GABA:

γ-aminobutyric acid

PE:

phosphoethanolamine

TMSP:

3-(trimethylsilyl)propionic-2,2,3,3-d4 acid

References

  • Allinger N. L. (1976) Calculation of molecular structure and energy by force-field methods.Adv. Phys. Org. Chem. 13, 1–82.

    Article  CAS  Google Scholar 

  • Allinger N. L. (1977) Conformational analysis 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms.J. Am. Chem. Soc. 99, 8127–8134.

    Article  CAS  Google Scholar 

  • Eliel E. L., Allinger N. L., Angyal S. J., and Morrison G. A. (1966)Conformational Analysis. Wiley, New York.

    Google Scholar 

  • Ellison D. W., Beal M. F., and Martin J. B. (1987) Phosphoethanolamine and ethanolamine are decreased in Alzheimer’s disease and Huntington’s disease.Brain Res. 417, 389–392.

    Article  PubMed  CAS  Google Scholar 

  • Glowiak T. and Sawka-Dobrowolska W. (1980) 3-Aminopropylphosphonic acid.Acta Cryst. B36, 961–962.

    Article  Google Scholar 

  • Haasnoot C. A. G., deLeeuw F. A. A. M., and Altona C. (1980) The relationship between proton-proton NMR coupling constants and substituent electronegativities—I. an empirical generalization of the Karplus equation.Tetrahedron 36, 2783–2792.

    Article  CAS  Google Scholar 

  • Hill D. R. and Bowery N. G. (1981)3H-Baclofen and3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain.Nature 290, 149–152.

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey G. A. and Maluszynaska H. (1982) A survey of hydrogen bond geometries in the crystal structures of amino acids.Int. J. Biol. Macromol. 4, 173–185.

    Article  CAS  Google Scholar 

  • Karplus M. (1959) Contact electron-spin coupling of nuclear magnetic moments.J. Chem. Phys. 30, 11–15.

    Article  CAS  Google Scholar 

  • Kerr D. I., Ong J., Johnston G. A., and Prager R. H. (1989) GABAB-receptor-mediated actions of baclofen in rat isolated neocortical slice preparations: antagonism by phosphono-analogues of GABA.Brain. Res. 480, 312–316.

    Article  PubMed  CAS  Google Scholar 

  • Klunk W. E., Xu C., Panchalingam K., McClure R. J., and Pettegrew J. W. (1994) Analysis of magnetic resonance spectra by mole percent: Comparison to absolute units.Neurobiol. Aging 15, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Kraut J. (1961) The crystal structure of 2-amino-ethanol phosphate.Acta Cryst. 14, 1146–1152.

    Article  CAS  Google Scholar 

  • Lehmann A., Hagberg H., Nystrom B., Sandberg, M., and Hamberger A. (1985a) In vivo regulation of extracellular taurine and other neuroactive amino acids in the rabbit hippocampus.Prog. Clin. Biol. Res. 179, 289–311.

    PubMed  CAS  Google Scholar 

  • Lehmann A., Lazarewicz J. W., and Zeise M. (1985b) N-Methylaspartate-evoked liberation of taurine and phosphoethanolamine in vivo: site of release.J. Neurochem. 45, 1172–1177.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann A. (1990) Derangements in cerebral osmohomeostasis: a common denominator for stimulation of taurine and phosphoethanolamine release.Prog. Clin. Biol. Res. 351, 337–347.

    PubMed  CAS  Google Scholar 

  • McIlwain H. and Bachelard H. S. (1985)Biochemistry and the Central Nervous System, 5th ed., Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Mohamadi F., Richards N. G. J., Guida W. C., Liskamp R., Caufield C., Chang G., Hendrikson T., and Still W. C. (1990) MacroModel—an integrated soft-ware system for modeling organic and bioorganic molecules using molecular mechanics.J. Comp. Chem. 11, 440–467.

    Article  CAS  Google Scholar 

  • Munns A. R. I., Low J. N., Tollin P., and Young D. W. (1981) 2-Aminoethyl hydrogen sulfate (zwitterion), C2H7NO4S.Cryst. Struct. Commun. 10, 1431–1434.

    CAS  Google Scholar 

  • Pachler K. G. R. (1964) Nuclear magnetic resonance study of some α-amino acids—II. Rotational isomerism.Spect. Acta 20, 581–587.

    Article  CAS  Google Scholar 

  • Steward E. G., Player R. B., and Warner D. (1973a) The crystal and molecular structure of gamma-aminobutyric acid determined at low temperature.Acta Cryst. B29, 2038–2040.

    Article  CAS  Google Scholar 

  • Steward E. G., Player R. B., and Warner D. (1973b) The crystal structure of gamma-aminobutyric acid hydrochloride. a refinement.Acta Cryst. B29, 2825–2826.

    Article  CAS  Google Scholar 

  • Stewart R. F. and Craven B. M. (1993) Molecular electrostatic potentials from crystal diffraction: The neurotransmitter γ-aminobutyric acid.Biophys. J. 65, 998–1005.

    Article  PubMed  CAS  Google Scholar 

  • Still W. C., Tempczyk A., Hawley R. C., and Hendrickson T. (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics.J. Am. Chem. Soc. 112, 6127–6129.

    Article  CAS  Google Scholar 

  • Swaminathan S. and Craven B. M. (1984) Electrostatic properties of phosphorylethanolamine at 123 K from crystal diffraction.Acta Cryst. B40, 511–518.

    Article  Google Scholar 

  • Tsukamoto S., Ogawa N., Mizuno S., and Mori A. (1975) Structure-activity relationships of 50 GABA-relatives in GABA radioreceptor assay.Neuroscience (Kobe, Japan) 8, 58,59.

    Google Scholar 

  • Tunnicliff G. and Smith J. A. (1981) Action of analogues on gamma-aminobutyric acid recognition sites in rat brain.Neurochem. Int. 3, 371–376.

    Article  CAS  PubMed  Google Scholar 

  • Ueoka S., Fujiwara T., and Tomita K. (1972) Crystal and molecular structure of omega-amino acids, omega-amino sulfonic acids and their derivatives. II. The crystal and molecular structure of alpha-form of 3-aminopropane sulfonic acid, homotaurine.Bull. Chem. Soc. Japan 45, 3634–3638.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klunk, W.E., McClure, R.J., Xu, CJ. et al. Structural determinants of activity at the GABAB receptor. Molecular and Chemical Neuropathology 26, 15–30 (1995). https://doi.org/10.1007/BF02814938

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814938

Index Entries

Navigation