Log in

Consequences of treatment with dexamethasone in rats on the susceptibility of total plasma and isolated lipoprotein fractions to copper oxidation

  • Original Articles
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

According to the oxidative hypothesis of atherosclerosis, a hyperoxidizability of lipoproteins could favor the development of the atherosclerotic process. Besides, it has been recently reported that models of elevated very-low-density-lipoprotein (VLDL) levels in rats resulted in an increased susceptibility of these VLDL to oxidation. Treatment with dexamethasone classically induces an increase in plasma VLDL concentration. The aim of our study was thus to assess the effects of a treatment with dexamethasone in rats on the susceptibility to copper oxidation, both on total plasma and on isolated lipoproteins.

Male Sprague-Dawley rats aged three months were treated with a daily intraperitoneal injection of dexamethasone (1.5 mg per kg) for five days (DEX group), whereas control rats were fedad libitum (AL group). In order to take into account the decrease of food intake induced by dexamethasone treatment, a group ofpair-fed rats was constituted (PF group). These rats had the same food intake as rats of the DEX group and were treated with a daily isovolumic intraperitoneal injection of NaCl for 5 d. After 5 d treatment, rats were fasted overnight, then killed, and blood was collected on EDTA. Low-density lipoproteins (VLDL+LDL) and high-density lipoproteins (HDL) were isolated by ultracentrifugation. A copper oxidation was conducted both on total plasma and on isolated lipoproteins.

As expected, after treatment with dexamethasone, plasma exhibited increased triglyceride and glucose levels. Similarly, VLDL + LDL of rats from the DEX group were enriched with triglycerides, when compared with VLDL + LDL of the other two groups of rats. Our major finding was a marked increase in the susceptibility of total plasma of the DEX group to copper oxidation, in comparison with the other two groups of rats. This oxidizability was assessed by the maximal level of oxidation products absorbing at 234 nm and classically considered to be conjugated dienes (7.46±0.70 μmol L−1 in the DEX group vs 3.36±0.40 and 2.05 ±0.60 μmol L−1 in the AL and PF groups, respectively). Nevertheless, this higher oxidizability was not observed in the isolated lipoprotein fractions, as shown by the formation of lipid peroxidation products such as conjugated dienes, thiobarbituric-acid reactive substances, hydroperoxides, 7-ketocholesterol, and dienals. This is not in agreement with other models of hypertriglyceridemia that have been reported to induce a hyperoxidizability of lipoproteins in rats. Our results led us to hypothesize that other plasma components such as proteins could be involved in this susceptibility to oxidation. Indeed, the severe protein catabolism induced by dexamethasone treatment could support this hypothesis, by forming protein components that are more susceptible to oxidation, as shown by an increased carbonyl formation upon plasma copper oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d:

density

HDL:

high density lipoprotein

LDL:

low density lipoprotein

mRNA:

messenger ribonucleic acid

Na2EDTA:

disodium ethylene diamine tetraacetate

TBARS:

thiobarbituric acid-reactive substances

VLDL:

very low density lipoprotein

References

  1. Taskinen, M. R., Nikkilä, E. A., Pelkonen, R., and Sane, T. (1983).J. Clin. Endocrinol. Metab. 57, 619–626.

    Article  PubMed  CAS  Google Scholar 

  2. Mori, W., Aoyama, H., and Mori, N. (1984).Jpn. J. Exp. Med. 54, 255–261.

    PubMed  CAS  Google Scholar 

  3. Asai, K., Funaki, C., Hayashi, T., Yamada, K., Naito, M., Kuzuya, M., Yoshida, F., Yoshimine, N., and Kuzuya, F. (1993).Arterioscl. Thromb. 13, 892–899.

    PubMed  CAS  Google Scholar 

  4. Cole, T. G., Wilcox, H. G., and Heimberg, M. (1982).J. Lipid Res. 23, 81–91.

    PubMed  CAS  Google Scholar 

  5. Martin-Sanz, P., Vance, J. E., and Brindley, D. N. (1990).Biochem. J. 271, 575–583.

    PubMed  CAS  Google Scholar 

  6. Reaven, E. P., Kolterman, O. G., and Reaven, G. M. (1974).J. Lipid Res. 15, 74–83.

    PubMed  CAS  Google Scholar 

  7. Rayssiguier, Y., Gueux, E., Bussière, L., and Mazur, A. (1993).J. Nutr. 123, 1343–1348.

    PubMed  CAS  Google Scholar 

  8. Garfield, S. A., Scott, A. C., and Cardell, R. R. (1978).Anat. Rec. 192, 73–78.

    Article  PubMed  CAS  Google Scholar 

  9. Bagdade, J. D., Yee, E., Albers, J., and Pykalisto, O. J. (1976).Metabolism 25, 533–542.

    Article  PubMed  CAS  Google Scholar 

  10. Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C., and Witztum, J. L. (1989).New Engl. J. Med. 320, 915–924.

    Article  PubMed  CAS  Google Scholar 

  11. Gueux, E., Cubizolles, C., Bussière, L., Mazur, A., and Rayssiguier, Y. (1993).Lipids 28, 573–575.

    Article  PubMed  CAS  Google Scholar 

  12. Mazur, A., Gueux, E., Bureau, I., Feillet-Coudray, C., Rock, E., and Rayssiguier, Y. (1998).Atherosclerosis 137, 443–445.

    Article  PubMed  CAS  Google Scholar 

  13. Hicks, J. J., Silva-Gomez, A. B., and Vilar-Rojas, C. (1997).Life Science 60, 2059–2067.

    Article  CAS  Google Scholar 

  14. Yamada, K., Naito, M., Hayashi, T., Asai, K., Yoshimine, N., and Igushi, A. (1993).Artery 20, 253–267.

    PubMed  CAS  Google Scholar 

  15. Bulkley, B. H., and Roberts, W. C. (1975).Am. J. Med. 58, 243–264.

    Article  PubMed  CAS  Google Scholar 

  16. Kalbak, K. (1972),Ann. Rheum. Dis. 31, 196–200.

    Article  PubMed  CAS  Google Scholar 

  17. Nashel, D. J. (1986).Am. J. Med. 80, 925–929.

    Article  PubMed  CAS  Google Scholar 

  18. Esterbauer, H., Striegl, G., Puhl, H., and Rotheneder, M. (1989).Free Rad. Res. Commun. 6, 67–75.

    CAS  Google Scholar 

  19. Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S., and Stadman, E. R. (1990).Methods Enzymol. 186, 464–478.

    PubMed  CAS  Google Scholar 

  20. Brindly, D. N. (1981).Clin. Sci. 61, 129–133.

    Google Scholar 

  21. Stern, M. P., Kolterman, O. G., Fries, J. F., McDevitt, H. O., and Reaven, G. M. (1973).Arch. Intern. Med. 132, 97–101.

    Article  PubMed  CAS  Google Scholar 

  22. El-Shaboury, A. H. and Hayes, T. M. (1973).Br. Med. J. 2, 85–86.

    PubMed  CAS  Google Scholar 

  23. Wang, C. H., McLeod, R. S., Yao, Z., and Brindley, D. N. (1995).Arterioscler. Thromb. Vasc. Biol. 15, 1481–1491.

    PubMed  CAS  Google Scholar 

  24. Ong, J. M., Simsolo, R. B., Saffari, B., and Kern, P. A. (1992).Endocrinology 130, 2310–2316.

    Article  PubMed  CAS  Google Scholar 

  25. Minet-Quinard, R., Moinard, C., Villié, F., Walrand, S., Vasson, M. P., Chopineau, J., and Cynober, L. (1999).Am. J. Physiol. 226, E558-E564.

    Google Scholar 

  26. Lyons, T. J. (1991).Diabetic Med. 8, 411–419.

    PubMed  CAS  Google Scholar 

  27. Scaccini, C., Nardini, M., D'Aquino, M., Gentili, V., DiFelice, M., and Tomassi, G. (1992).J. Lipid Res. 33, 627–633.

    PubMed  CAS  Google Scholar 

  28. Feurgard, C., Bayle, D., Guézingar, F., Sérougne, C., Mazur, A., Lutton, C., Aigueperse, J., Gourmelon, P., and Mathé, D. (1998).Radiat. Res. 150, 43–51.

    Article  PubMed  CAS  Google Scholar 

  29. Simpson, K. L. (1983).Proc. Nutr. Soc. 42, 7–17.

    Article  PubMed  CAS  Google Scholar 

  30. Kang, M. Y., Tsuchiya, M., Packer, L., and Manabe, M. (1998).Acta Anaesthesiol. Scand. 42, 4–12.

    Article  PubMed  CAS  Google Scholar 

  31. Taniguchi, S., Yanase, T., Kobayashi, K., Takayanagi, R., Haji, M., Umeda, F., and Nawata, H. (1994).Endocr. J. 41, 605–611.

    PubMed  CAS  Google Scholar 

  32. Morel, D. W., and Chisolm, G. M. (1989).J. Lipid Res. 30, 1827–1834.

    PubMed  CAS  Google Scholar 

  33. Stadtman, E. R. (1993).Annu. Rev. Biochem. 62, 797–821.

    Article  PubMed  CAS  Google Scholar 

  34. Max, S. R., Mill, J., Mearow, K., Konagaya, M., Konagaya, Y., Thomas, J. W., Banner, C., and Vitkovic, L. (1988).Am. J. Physiol. 255, E397-E403.

    PubMed  CAS  Google Scholar 

  35. Ardawi, M. S., and Jamal, Y. S. (1990).Clin. Sci. Mol. Med. 79, 139–147.

    CAS  Google Scholar 

  36. De Vos, P., Saladin, R., Auwerx, J., and Staels, B. (1995).J. Biol. Chem. 270, 15958–15961.

    Article  PubMed  Google Scholar 

  37. Di Silvestro, R. A. and Jones, A. A. (1996).Biochim. Biophys. Acta 1317, 81–83.

    Google Scholar 

  38. Allain, C. C., Poon, L. S., Chan, C., Richmond, S. G., and Fu, P. C. (1974).Clin. Chem. 20, 470–475.

    PubMed  CAS  Google Scholar 

  39. Eggstein, M., and Kreutz, F. H. (1966).Klin. Wochenschr. 44, 262–267.

    Article  PubMed  CAS  Google Scholar 

  40. Takayama, M., Itoh, S., Nagasaki, T., and Tanimipu, J. (1977).Clin. Chim. Acta 79, 93–98.

    Article  PubMed  CAS  Google Scholar 

  41. Yagi, K. (1976).Biochem. Med. 15, 212–216.

    Article  PubMed  CAS  Google Scholar 

  42. Arnaud, J., Fortis, I., Blachier, S., Kia, D., and Favier, A. (1991).J. Chromatogr. 572, 103–116.

    Article  PubMed  CAS  Google Scholar 

  43. Spranger, T., Finckh, B., Fingerhut, R., Kohlschütter, A., Beisigel, U., and Kontush, A. (1998).Chem. Phys. Lipids 91, 39–52.

    Article  PubMed  CAS  Google Scholar 

  44. Chapman, M. J. (1980).J. Lipid Res. 21, 789–853.

    PubMed  CAS  Google Scholar 

  45. Di Silvestro, R. A. and Blostein-Fuji, A. (1997).Free Radic. Biol. Med. 22, 739–742.

    Article  Google Scholar 

  46. Watanabe, N., Kamei, S., Ohkubo, A., Yamanaka, M., Ohsawa, S., Makino, K., and Tokuda, K. (1986).Clin. Chem. 32, 1551–1554.

    PubMed  CAS  Google Scholar 

  47. Pinchuk, I., and Lichtenberg, D. (1996).Free Radic. Res. 24, 351–360.

    Google Scholar 

  48. Conover, W. J. (1980).Practical nonparametric statistics. Wiley: New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belkebir-Mesbah, D., Bonnefont-Rousselot, D., Frey-Fressart, V. et al. Consequences of treatment with dexamethasone in rats on the susceptibility of total plasma and isolated lipoprotein fractions to copper oxidation. Endocr 10, 233–242 (1999). https://doi.org/10.1007/BF02738622

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738622

Key Words

Navigation