Log in

Relating laboratory and outdoor exposure of coatings: IV. Mode and mechanism for hydrolytic degradation of acrylic-melamine coatings exposed to water vapor in the absence of UV light

  • Published:
Journal of Coatings Technology

Abstract

Acrylic-melamine coatings are known to be susceptible to hydrolysis when exposed to water or humid environments. The mode and specific pathways for hydrolytic degradation of acrylic-melamine coatings exposed to water vapor in the absence of ultraviolet light are presented. Samples of a partially methylated melamine-acrylic coating applied to CaF2 substrates were subjected to five different relative humidity levels ranging from approximately 0 to 90% at 50°C. Coating degradation was measured with transmission Fourier transform infrared spectroscopy (FTIR) and tap** mode atomic force microscopy (AFM). In humid environments, partially methylated melamine-acrylic coatings undergo hydrolysis readily, causing considerable material loss and formation of mainly primary amines and carboxylic acids. The rate of hydrolysis increases with increasing RH. Hydrolytic degradation of acrylic-melamine coatings is an inhomogeneous process in which pits form, deepen, and enlarge with exposure. Such localized degradation mode suggests that hydrolysis of this material is an autocatalytic progression where acidic degradation products formed in the pits catalyze and accelerate the hydrolysis reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmitz, P.J., Holubka, J.W., and Xu, L., “Acid Etch of Automotive Clearcoats II. Comparison of Degradation Chemistry in Laboratory and Field Testing,”Journal of Coatings Technology,72, No. 902, 53 (2000).

    Article  CAS  Google Scholar 

  2. Holubka, J.W., Schmitz, P.J., and Xu, L.-F., “Mechanism for Environmental Etch of Acrylic Melamine-Based Automotive Clearcoats: Identification of Degradation Products,”Journal of Coatings Technology,72, No. 904, 39 (2000).

    Google Scholar 

  3. Schulz, U., Trubiroha, P., Schernau, U., and Baumgart, H.,Prog. Org. Coat., 40, 151 (2000).

    Article  CAS  Google Scholar 

  4. Rogers, W.R., Garner, D.P., and Cheever, G.D., “Study of the Attack of Acidic Solutions on Melamine-Acrylic Basecoat/Clearcoat Paint Systems,”Journal of Coatings Technology,70, No 877, 83 (1998).

    Article  Google Scholar 

  5. Wernstäh, K.L.,Polym. Deg. Stab., 54, 57 (1996).

    Article  Google Scholar 

  6. English, A.D. and Spinelli, J.J., “Degradation Chemistry of Primary Crosslinks in High Solids Enamel Finishes: Solar Assisted Hydrolysis,”Journal of Coatings Technology,56, No. 711, 43 (1984).

    CAS  Google Scholar 

  7. Bauer, D.R. and Briggs, L.M., inCharacterization of Highly Crosslinked Polymers, Labana, S.S. and Dickie, R.A. (Eds.),ACS Symposium Series 243, American Chemical Society, Washington, D.C., p. 271, 1983.

    Chapter  Google Scholar 

  8. Bauer, D. and Mielewski, D.F.,Polym. Deg. Stab., 40, 349 (1993).

    Article  CAS  Google Scholar 

  9. Gerlock, J.L., Van Oene, H., and Bauer, D.,Euro. Polym. J., 19, 11 (1983).

    Article  CAS  Google Scholar 

  10. Gerlock, J.L., Dean, M.J., Korniski, T.J., and Bauer, D.R.,Ind. Eng. Chem. Prod. Res. Dev., 25, 449 (1986).

    Article  CAS  Google Scholar 

  11. Nguyen, T., Martin, J., Byrd, E., and Embree, N., “Relating Laboratory and Outdoor Exposure of Coatings: II. Effects of Relative Humidity on Photodegradation and the Apparent Quantum Yield of Acrylic-Melamine Coatings,”Journal of Coatings Technology,74, No. 932, 65 (2002).

    Article  CAS  Google Scholar 

  12. Nguyen, T., Martin, J.W., Byrd, E., and Embree, N.,Polym. Deg. Stab., 77, 1 (2002).

    Article  CAS  Google Scholar 

  13. Bauer, D.R.,J. Appl. Polym. Sci., 27, 3651 (1982).

    Article  CAS  Google Scholar 

  14. Berge, A., Gudmunsen, S., and Ulgelstad, J.,Eur. Polym. J., 5, 171 (1969).

    Article  CAS  Google Scholar 

  15. Berge, A., Kvaeven, and Ugelstad, J.,Eur. Polym. J., 6, 981 (1970).

    Article  CAS  Google Scholar 

  16. Rancourt, J.D.,Optical Thin Films, User’s Handbook, McGraw-Hill, New York, Chap. 6, p. 183, 1987.

    Google Scholar 

  17. Martin, J.W., Nguyen, T., Byrd, E., Embree, N., and Dickens, B.,Polym. Deg. Stab., 75, 193 (2002).

    Article  CAS  Google Scholar 

  18. Magonov, S.N. and Heaton, M.G.,Am. Laboratory, 30, May (1998).

  19. VanLandingham, M., Nguyen, T., Byrd, E., and Martin, J.W., “On the Use of the Atomic Force Microscopy to Monitor Physical Degradation of Polymeric Coating Surfaces,”Journal of Coatings Technology,73, No. 923, 43 (2001).

    Article  CAS  Google Scholar 

  20. Weast, R. (Ed.),Handbook of Chemistry and Physics, CRC Press, 53rd ed., p. D 148, 1972.

  21. Adamson, A.W.,Physical Chemistry of Surfaces, 2nd ed., Interscience, New York, pp. 584–589, 1967.

    Google Scholar 

  22. Barrie, J.A. and Machin, D.,Trans Faraday Soc., 67, 244 (1971).

    Article  CAS  Google Scholar 

  23. Toprak, C., Agar, J.N., and Falk, M.,J. Chem. Soc. Faraday, 75, 803 (1979).

    Article  CAS  Google Scholar 

  24. Barrie, J.A., inDiffusion in Polymers, Crank, J. and Park, G.S. (Eds.), Academic Press, New York, pp. 259–308, 1968.

    Google Scholar 

  25. VanLandingham, M.R., Eduljee, R.F., and Gillespie, J.W., Jr.,J. Appl. Polym. Sci., 71, 669 (1999).

    Google Scholar 

  26. Magonov, S.N., Elings, V.B., and Papkov, V.S.,Polymer, 38, 297 (1997).

    Article  CAS  Google Scholar 

  27. Sauer, B.B., McLean, R.S., and Thomas, R.R.,Langmuir, 14, 3045 (1998).

    Article  CAS  Google Scholar 

  28. Giraud, M., Nguyen, T., Gu, X., and VanLandingham, M.,Proc. Adhesion Society Meeting, Emerson, J.A. (Ed.), p. 260, 2001.

  29. Gu, X., Raghavan, D., Nguyen, T., and VanLandingham, M.,Polym. Deg. Stab., 74, 139 (2001).

    Article  CAS  Google Scholar 

  30. Nguyen, T., Gu., X., VanLandingham, M., Giraud, M., Dutruc-Rosset, R., Ryntz, R., and Nguyen, D.,Proc. Adhesion Society Meeting, Emerson, J.A. (Ed.), p. 68, 2001.

  31. Hearn, M.J., Ratner, B.D., and Briggs, D.,Macromolecules, 21, 2950 (1988).

    Article  ADS  CAS  Google Scholar 

  32. Yoon, S.C., Ratner, B.D., Iván, B., and Kennedy, J.P.,Macromolecules, 27, 1548 (1994).

    Article  ADS  CAS  Google Scholar 

  33. Shakesheff, K.M., Evora, C., Soriano, I., and Langer, R.,J. Colloid Interface Sci., 185, 538 (1996).

    Article  Google Scholar 

  34. Chen, X., McGurk, S.L., Davies, M.C., Roberts, C.J., Shakesheff, K.M., Tendler, S.J.B., and Williams, P.M.,Macromolecules, 31, 2278 (1998).

    Article  ADS  CAS  Google Scholar 

  35. Pienka, Z., Oike, H., and Tezuka, Y.,Langmuir, 15, 3197 (1999).

    Article  Google Scholar 

  36. Gu, X., Nguyen, T., Sung, L., and Jean, J.,Proc. of the Federation of Societies for Coatings Technology Annual Meeting Program, New Orleans, LA, November, 2002.

  37. Chang, T.T.,Prog. Org. Coat., 29, 45 (1996).

    Article  CAS  Google Scholar 

  38. Blank, W.J. and Hensley, W.L., “Use of Amino Crosslinking Agents in Water-Based Coatings,”Journal of Paint Technology,46, No. 593, 56 (1974).

    Google Scholar 

  39. Bauer, D. and Dickie, R.,J. Appl. Polym. Sci., 18, 2014 (1980).

    Google Scholar 

  40. Larkin, P.J., Makowski, M.P., Colthup, N.B., and Flood, L.A.,Vibrational Spectros., 17, 53 (1998).

    Article  CAS  Google Scholar 

  41. Colthup, N.B., Daly, L.H., and Wiberley, S.E.,Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic Press, New York, p. 439, 1990.

    Google Scholar 

  42. Leadley, S.R., Shakesheff, K.M., et al.,Biomaterials, 19, 1353 (1998).

    Article  PubMed  CAS  Google Scholar 

  43. Gopferich, A. and Langer, R.,J. Polym. Sci., Part A. Polym. Chem., 31, 245 (1993).

    Article  Google Scholar 

  44. Nguyen, T., Hubbard, J.B., and Pommersheim, J.M., “Unified Model for the Degradation of Organic Coatings on Steel in a Neutral Electrolyte,”Journal of Coatings Technology,68, No. 855, 45 (1996).

    CAS  Google Scholar 

  45. Karyakina, M.I. and Kuzmak, A.E.,Prog. Org. Coat., 18, 325 (1990).

    Article  CAS  Google Scholar 

  46. Bascom, W.D.,J. Adhesion, 2, 168 (1970).

    Article  Google Scholar 

  47. Cuthrell, R.E.,J. Appl. Polym. Sci., 12, 1263 (1968).

    Article  CAS  Google Scholar 

  48. Erath, E.H. and Robinson, M.,Proc. Am. Chem. Soc. Meeting, Organic Coatings and Plastics Division, 23, 395 (1963).

    Google Scholar 

  49. Racich, J.L. and Koutsky, J.E., inChemistry and Properties of Crosslinked Polymers, Labana, S.S. (Ed.), Academic Press, p. 303, 1977.

  50. Kontou, E., Spathis, G., and Theocaris, P.S.,J. Polymer Sci., Polym. Chem., 23, 1493 (1985).

    Article  CAS  Google Scholar 

  51. Gu, X., Nguyen, T., VanLandingham, M., and Raghavan, D.,Proc. Adhesion Society Meeting, Orlando, pp. 537–539, February 2002.

  52. Fischer, M. and Tran, C.D.,Anal. Chem., 71, 953 (1999).

    Article  PubMed  CAS  Google Scholar 

  53. Mayne, J.E.O. and Scantlebury, J.D.,Br. Polymer, 2, 240 (1970).

    Article  CAS  Google Scholar 

  54. Mayne, J.E.O. and Mills, D.J.,J. Oil & Colour Chemists’ Assoc., 58, 155 (1975).

    CAS  Google Scholar 

  55. Mills, D.J. and Mayne, J.E.O., inCorrosion Control by Organic Coatings, H. Leiheiser, Jr. (Ed.), National Association of Corrosion Engineers, Houston, TX, p. 12; and references therein, 1981.

  56. Fernandez-Prini, R. and Corti, H., “Epoxy Coal Tar Films: Membrane Properties and Film Deterioration,”Journal of Coatings Technology,49, No. 632, 62 (1977).

    CAS  Google Scholar 

  57. Corti, H., Fernandez, P.R., and Gomez, D.,Prog. Org. Coat., 10, 5 (1982).

    Article  CAS  Google Scholar 

  58. Wu, C.L., Zhou, X.J., and Tan, Y.J.,Prog. Org. Coat., 25, 379 (1995).

    Article  CAS  Google Scholar 

  59. Walker, P.,Official Digest,37, No. 491, 1561 (1965).

    CAS  Google Scholar 

  60. Raghavan, D., Gu, X., Van Landingham, M., and Nguyen, T.,J. Polym. Sci., Polymer Physics, 39, 1460 (2001).

    Article  CAS  Google Scholar 

  61. Richard, J. Mignaud, C., and Wong, K.,Polym. Inter., 30, 431 (1993).

    Article  CAS  Google Scholar 

  62. Tesuka, Y., Nobe, S., and Shiomi, T.,Macromolecules, 28, 8251 (1995).

    Article  ADS  Google Scholar 

  63. Nguyen, T.H., Himmelstein, K.J., and Higuchi, T.,J. Controlled Rel. 4, 9 (1986).

    Article  Google Scholar 

  64. Streitwieser, D. Jr. and Heatcock, C.H.,Introduction to Organic Chemistry, 2nd ed., Macmillan Publishing, New York, p. 399, 1981.

    Google Scholar 

  65. Ibid, p. 367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

100 Bureau Dr., Mail Stop 8621, Gaithersburg, MD 20899.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T., Martin, J. & Byrd, E. Relating laboratory and outdoor exposure of coatings: IV. Mode and mechanism for hydrolytic degradation of acrylic-melamine coatings exposed to water vapor in the absence of UV light. Journal of Coatings Technology 75, 37–50 (2003). https://doi.org/10.1007/BF02720521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02720521

Keywords

Navigation