Log in

From mice to men: the evolution of the large, complex human brain

  • Perspectives
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  • Allman J 1999Evolving brains (New York: W H Freeman)

    Google Scholar 

  • Arnason U, Gullberg A and Janke A 1998 Molecular timing of primate divergences as estimated by two nonprimate calibration points;J. Mol. Evol. 47 718–727

    Article  CAS  Google Scholar 

  • Barton R A 2004 Binocularity and brain evolution in primates;Proc. Natl. Acad. Sci. USA 101 10113–10115

    Article  CAS  Google Scholar 

  • Beck P D, Pospichal M W and Kaas J H 1996 Topography, architecture, and connections of somatosensory cortex in opossums: evidence for five somatosensory areas;J. Comp. Neurol. 366 109–133

    Article  CAS  Google Scholar 

  • Cantalupo C and Hopkins W D 2001 Asymmetric Broca’s area in great apes — a region of the ape brain is uncannily similar to one linked with speech in humans;Nature (London) 414 505

    Article  CAS  Google Scholar 

  • Cartmill M 1974 Rethinking primate origins;Science 184 436–443

    Article  CAS  Google Scholar 

  • Catania K C, Lyon D C, Mock O B and Kaas J H 1999 Cortical organization in shrews: evidence from five species;J. Comp. Neurol. 410 55–72

    Article  CAS  Google Scholar 

  • Catania K C, Collins C E and Kaas J H 2000a Organization of sensory cortex in the East African Hedge Hog(Atelerix albiventris);J. Comp. Neurol. 421 256–274

    Article  CAS  Google Scholar 

  • Catania K C, Jain N, Franca J G, Volchan E and Kaas J H 2000b The organization of somatosensory cortex in the short-tailed opossum(Monodelphis domestica);Somatosens. Mot. Res. 17 39–51

    Article  CAS  Google Scholar 

  • Cherniak C 1990 The bounded brain: toward a quantitative neuroanatomy;J. Cogn. Neurosci. 2 58–68

    Article  CAS  Google Scholar 

  • Clark Le Gros W E 1959The antecedents of man (Edinburgh: University Press)

    Google Scholar 

  • Corballis M C 1989 Laterality and human evolution;Psych. Rev. 96 492–505

    Article  CAS  Google Scholar 

  • Corballis M C 1998 Cerebral asymmetry: motoring on;Trends Cogn. Sci. 2 152–157

    Article  CAS  Google Scholar 

  • Dominguez P, Milner A C, Ketcham R A, Cookson M J and Rowe T B 2004 The avian nature of the brain and inner ear ofArchaeopteryx;Nature (London) 430 666–669

    Article  Google Scholar 

  • Elston G N, Elston A, Casagrande V A and Kaas J H 2004 Regional specialization in pyramidal cell structure in the visual cortex of the Galago. An intracellular injection study with comparative notes on New World and Old World monkeys;Brain Behav. Evol. (in press)

  • Gannon P J, Holloway R L, Broadfield D C and Braun A R 1998 Asymmetry of chimpanzee planum temporale: human like pattern of Wernicke’s brain language area homologue;Science 279 220–222

    Article  CAS  Google Scholar 

  • Gauthier I 2004 Face expertise and category specialization in human occipitotemporal cortex; inThe primate visual system (eds) J H Kaas and C E Collins (Boca Raton: CRC Press) pp 289–310

    Google Scholar 

  • GazzanigaM S 1995 Principles of human brain organization derived from split-brain studies;Neuron 14 217–228

    Article  Google Scholar 

  • Gould H J, Cusick C G, Pons T P and Kaas J H 1986 The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys;J. Comp. Neurol. 247 297–325

    Article  Google Scholar 

  • Hennig W 1966Phylogenetic systematics (Urbana: University of Illinois Press)

    Google Scholar 

  • Jerison H J 1973Evolution of the brain and intelligence (New York: Academic Press)

    Google Scholar 

  • Kaas J H, Hall W C and Diamond I T 1970 Cortical visual areas I and II in the hedgehog: relation between evoked potential maps and architectonic subdivisions;J. Neurophysiol. 33 595–615

    Article  CAS  Google Scholar 

  • Kaas J H 2000 Why is brain size so important: Design problems and solutions as neocortex gets bigger or smaller;Brain Mind 1 7–23

    Article  Google Scholar 

  • Kaas J H and Hackett T A 2000 Subdivisions of auditory cortex and processing streams in primates;Proc. Natl. Acad. Sci. USA 97 11793–11799

    Article  CAS  Google Scholar 

  • Kaas J H 2002 Convergences in the modular and areal organization of the forebrain of mammals: implications for the reconstruction of forebrain evolution;Brain Behav. Evol. 59 262–272

    Article  Google Scholar 

  • Kaas J H 2003 Early visual areas: V2, V3, DM, DL and MT; inThe primate visual system (eds) J H Kaas and C E Collins (Boca Raton: CRC Press) pp 139–159

    Google Scholar 

  • Kaas J H and Preuss T M 2003 Human brain evolution; inFundamental neuroscience (ed.) L R Squire (San Diego: Academic Press) pp 1147–1166

    Google Scholar 

  • Krubitzer L A, Sesma M A and Kaas J H 1986 Microelectrode maps, myeloarchitecture, and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels;J. Comp. Neurol. 250 403–430

    Article  CAS  Google Scholar 

  • Krubitzer L A, Kunzle H and Kaas J H 1997 Organization of sensory cortex in a Madagascan insectivore, the tenrec(Echinops telfairi);J. Comp. Neurol. 379 399–414

    Article  CAS  Google Scholar 

  • Li X G, Florence S L and Kaas J H 1990 Areal distributions of cortical neurons projecting to different levels of the caudal brain stem and spinal cord in rats;Somatosens. Mot. Res. 7 315–335

    Article  CAS  Google Scholar 

  • Lyon D C, Jain N and Kaas J H 1998 Cortical connections of striate and extrastriate visual areas in tree shrews:J. Comp. Neurol. 401 109–128

    Article  CAS  Google Scholar 

  • Murphy W J, Eizirik E, O’Brien S J, Madesen O, Scally M, Douady C J, Teeling E, Ryder O A, Stanhope M J, de Jong W W and Springer M S 2001 Resolution of the early placental mammal radiation using Bayesian phylogenetics;Science 294 2348–2351

    Article  CAS  Google Scholar 

  • Northcutt R G and Kaas J H 1995 The emergence and evolution of mammalian neocortex;Trends Neurosci. 18 373–379

    Article  CAS  Google Scholar 

  • Povinelli D J and Preuss T M 1995 Theory of mind: evolutionary history of a cognitive specialization;Trends Neurosci. 18 418–424

    Article  CAS  Google Scholar 

  • Preuss T M and Goldman-Rakic PS 1991 Architectonics of the parietal and temporal association cortex in the strepsirhine primateGalago compared to the anthropoid primateMacaca;J. Comp. Neurol. 310 475–506

    Article  CAS  Google Scholar 

  • Radinsky L 1975 Primate brain evolution;Am. Sci. 63 656–663

    CAS  PubMed  Google Scholar 

  • Ringo J L, Doty R W, Demeter S and Simond D Y 1994 Time is of the essence: A conjucture that hemispheric specialization arises from interhemispheric conduction delay;Cereb. Cortex 4 331–343

    Article  CAS  Google Scholar 

  • Ross C F 1996 Adaptive explanation for the origins of the Anthropoidea (Primates);Am. J. Primatol. 40 205–230

    Article  Google Scholar 

  • Roth G L 2001 The evolution of consciousness; inBrain evolution and cognition (eds) G L Roth and M F Wullimann (New York: Wiley)

    Google Scholar 

  • Schüz A and Palm G 1989 Density of neurons and synapses in the cerebral cortex of the mouse;J. Comp. Neurol. 286 442–455

    Article  Google Scholar 

  • Sur M 1980 Receptive fields of neurons in areas 3b and 1 of somatosensory cortex in monkeys;Brain Res. 198 465–471

    Article  CAS  Google Scholar 

  • Sur M, Merzenich M M and Kaas J H 1980 Magnification, receptive-field area, and “hypercolumn” size in areas 3b and 1 of somatosensory cortex in owl monkeys;J. Neurophysiol. 44 295–311

    Article  CAS  Google Scholar 

  • Wu C W-H, Bichot N P and Kaas J H 2000 Converging evidence from microstimulation, architecture, and connections for multiple motor areas in the frontal and cingulate cortex of prosimian primates;J. Comp. Neurol. 423 140–177

    Article  CAS  Google Scholar 

  • Wu C W-H and Kaas J H 2003 Somatosensory cortex of prosimian galagos: physiological recording, cytoarchitecture, and corticocortical connections of anterior parietal cortex and cortex of the lateral sulcus;J. Comp. Neurol. 457 263–292

    Article  Google Scholar 

  • Yeni-Komshian G H and Benson D A 1976 Anatomical study of cerebral asymmetry in the temporal lobe of humans, chimpanzees, and rhesus monkeys;Science 192 387–389

    Article  CAS  Google Scholar 

  • Young M P, Scannell J W and Burns G A D C 1995The analysis of cortical connectivity (Austin: R G Landes)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaas, J.H. From mice to men: the evolution of the large, complex human brain. J. Biosci. 30, 155–165 (2005). https://doi.org/10.1007/BF02703695

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703695

Keywords

Navigation