Log in

Ventriculovascular coupling in systolic and diastolic heart failure

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Pressure-volume analysis has provided critical insight into ventricular mechanics, and it has elucidated the underlying mechanisms of heart failure (HF). Renewed interest in ventriculovascular coupling, the interaction of the left ventricle and the arterial system, has developed from recent investigations focusing on the importance of heart rate control in systolic HF, blood pressure lability in the elderly, and acute pulmonary edema in patients with HF and a normal ejection fraction. These data suggest that abnormal ventriculovascular coupling may be an additional pathophysiological mechanism underlying the development of HF with a normal ejection fraction and may provide a target for novel therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Kumar A, Anel R, Bunnell E, et al.: Preload-independent mechanisms contribute to increased stroke volume following large volume saline infusion in normal volunteers: a prospective interventional study. Crit Care 2004, 3:R128-R136.

    Article  Google Scholar 

  2. Bellenger NG, Burgess MI, Ray SG, et al.: Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 2000, 21:1387–1396.

    Article  PubMed  CAS  Google Scholar 

  3. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K: Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 1983, 245(Suppl 5, Pt 1):H773-H780. Classic study delineating the mathematical derivation and validation of Ea and its role, along with ventricular elastance and preload volume, in determining SV.

    PubMed  CAS  Google Scholar 

  4. Burkhoff D, Sagawa K: Ventricular efficiency predicted by an analytical model. Am J Physiol 1986, 250(Suppl 6, Pt 2): R1021-R1027.

    PubMed  CAS  Google Scholar 

  5. Sunagawa K, Sagawa K, Maughan WL: Ventricular interaction with the loading system. Ann Biomed Eng 1984, 12:163–189.

    Article  PubMed  CAS  Google Scholar 

  6. Sunagawa K, Maughan WL, Sagawa K: Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 1985, 56:586–595.

    PubMed  CAS  Google Scholar 

  7. Kelly RP, Ting CT, Yang TM, et al.: Effective arterial elastance as index of arterial vascular load in humans. Circulation 1992, 86:513–521.

    PubMed  CAS  Google Scholar 

  8. Starling MR: Left ventricular-arterial coupling relations in the normal human heart. Am Heart J 1993, 125:1659–1666.

    Article  PubMed  CAS  Google Scholar 

  9. Asanoi H, Sasayama S, Kameyama T: Ventriculoarterial coupling in normal and failing heart in humans. Circ Res 1989, 65:483–493.

    PubMed  CAS  Google Scholar 

  10. Najjar SS, Schulman SP, Gerstenblith G, et al.: Age and gender affect ventricular-vascular coupling during aerobic exercise. J Am Coll Cardiol 2004, 44:611–617. Recent study demonstrating the effect of combined ventriculovascular stiffening on aerobic capacity and EF in normal human aging.

    Article  PubMed  Google Scholar 

  11. Fleg JL, O’Connor F, Gerstenblith G, et al.: Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women. J Appl Physiol 1995, 78:890–900.

    PubMed  CAS  Google Scholar 

  12. Nichols WW, O’Rourke MF, Avolio AP, et al.: Effects of age on ventricular-vascular coupling. Am J Cardiol 1985, 55:1179–84.

    Article  PubMed  CAS  Google Scholar 

  13. Vaitkevicius PV, Fleg JL, Engel JH, et al.: Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation 1993, 88(Suppl 4, Pt 1):1456–1462.

    PubMed  CAS  Google Scholar 

  14. Saba PS, Roman MJ, Ganau A, et al.: Relationship of effective arterial elastance to demographic and arterial characteristics in normotensive and hypertensive adults. J Hypertens 1995, 13:971–977.

    Article  PubMed  CAS  Google Scholar 

  15. Cohen-Solal A, Caviezel B, Laperche T, Gourgon R: Effects of aging on left ventricular-arterial coupling in man: assessment by means of arterial effective and left ventricular elastances. J Hum Hypertens 1996, 10:111–116.

    PubMed  CAS  Google Scholar 

  16. Chen CH, Nakayama M, Nevo E, et al.: Coupled systolicventricular and vascular stiffening with age: implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol 1998, 32:1221–1227. Physiological investigation using invasively measured P-V relations in young and old individuals demonstrating the load lability that results from combined ventriculovascular stiffening.

    Article  PubMed  CAS  Google Scholar 

  17. Baan J, Jong TT, Kerkhof PL, et al.: Continuous stroke volume and cardiac output from intra-ventricular dimensions obtained with impedance catheter. Cardiovasc Res 1981, 15:328–334.

    Article  PubMed  CAS  Google Scholar 

  18. Burkhoff D, van der Velde E, Kass D, et al.: Accuracy of volume measurement by conductance catheter in isolated, ejecting canine hearts. Circulation 1985, 72:440–447.

    PubMed  CAS  Google Scholar 

  19. Kass DA, Yamazaki T, Burkhoff D, et al.: Determination of left ventricular end-systolic pressure-volume relationships by the conductance (volume) catheter technique. Circulation 1986, 73:586–595.

    PubMed  CAS  Google Scholar 

  20. Kass DA, Midei M, Graves W, et al.: Use of a conductance (volume) catheter and transient inferior vena caval occlusion for rapid determination of pressure-volume relationships in man. Cathet Cardiovasc Diagn 1988, 15:192–202.

    Article  PubMed  CAS  Google Scholar 

  21. Chemla D, Antony I, Lecarpentier Y, Nitenberg A: Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans. Am J Physiol Heart Circ Physiol 2003 August, 285:H614-H620.

    PubMed  CAS  Google Scholar 

  22. Sharir T, Feldman MD, Haber H, et al.: Ventricular systolic assessment in patients with dilated cardiomyopathy by preload-adjusted maximal power. Validation and noninvasive application. Circulation 1994, 89:2045–2053.

    PubMed  CAS  Google Scholar 

  23. Chen CH, Nakayama M, Talbot M, et al.: Verapamil acutely reduces ventricular-vascular stiffening and improves aerobic exercise performance in elderly individuals. J Am Coll Cardiol 1999, 33:1602–1609.

    Article  PubMed  CAS  Google Scholar 

  24. Saba PS, Ganau A, Devereux RB, et al.: Impact of arterial elastance as a measure of vascular load on left ventricular geometry in hypertension. J Hypertens 1999, 17:1007–1015.

    Article  PubMed  CAS  Google Scholar 

  25. Maurer MS, King DL, El-Khoury RL, et al.: Left heart failure with a normal ejection fraction: identification of different pathophysiologic mechanisms. J Card Fail 2005, 11:177–187. Cross sectional study that employs noninvasive methods to measure ventricular properties and arterial elastance demonstrating that among patients with HFNEF, subgroups of patients exist with potentially distinct pathophysiological mechanisms.

    Article  PubMed  Google Scholar 

  26. Shishido T, Hayashi K, Shigemi K, et al.: Single-beat estimation of end-systolic elastance using bilinearly approximated timevarying elastance curve. Circulation 2000, 102:1983–1989.

    PubMed  CAS  Google Scholar 

  27. Takeuchi M, Igarashi Y, Tomimoto S, et al.: Single-beat estimation of the slope of the end-systolic pressure-volume relation in the human left ventricle. Circulation 1991, 83:202–212.

    PubMed  CAS  Google Scholar 

  28. Senzaki H, Chen CH, Kass DA: Single-beat estimation of endsystolic pressure-volume relation in humans. A new method with the potential for noninvasive application. Circulation 1996, 94:2497–2506.

    PubMed  CAS  Google Scholar 

  29. Lee DS, Kim KM, Kim SK, et al.: Development of a method for measuring myocardial contractility with gated myocardial SPECT and arterial tonometry. J Nucl Cardiol 1999, 6:657–663.

    Article  PubMed  CAS  Google Scholar 

  30. Lee WS, Nakayama M, Huang WP, et al.: Assessment of left ventricular end-systolic elastance from aortic pressure-left ventricular volume relations. Heart Vessels 2002, 16:99–104.

    Article  PubMed  Google Scholar 

  31. Chen CH, Fetics B, Nevo E, et al.: Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 2001, 38:2028–2034. This article discusses an empirically derived technique used to estimate ventricular elastance in humans. The technique was derived from echo Doppler data and is compared with invasive measures.

    Article  PubMed  CAS  Google Scholar 

  32. Hunt SA, Baker DW, Chin MH, et al.: ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure): Developed in Collaboration With the International Society for Heart and Lung Transplantation; Endorsed by the Heart Failure Society of America. Circulation 2001, 104:2996–3007.

    PubMed  CAS  Google Scholar 

  33. Bristow MR: Mechanism of action of beta-blocking agents in heart failure. Am J Cardiol 1997, 80:26L-40L.

    Article  PubMed  CAS  Google Scholar 

  34. Reiken S, Gaburjakova M, Gaburjakova J, et al.: Beta-adrenergic receptor blockers restore cardiac calcium release channel (ryanodine receptor) structure and function in heart failure. Circulation 2001, 104:2843–2848.

    PubMed  CAS  Google Scholar 

  35. Yasumura Y, Takemura K, Sakamoto A, et al.: Changes in myocardial gene expression associated with beta-blocker therapy in patients with chronic heart failure. J Card Fail 2003, 9:469–474.

    Article  PubMed  CAS  Google Scholar 

  36. Cohen-Solal A, Faraggi M, Czitrom D, et al.: Left ventriculararterial system coupling at peak exercise in dilated nonischemic cardiomyopathy. Chest 1998, 113:870–877.

    PubMed  CAS  Google Scholar 

  37. Ohte N, Cheng CP, Little WC: Tachycardia exacerbates abnormal left ventricular-arterial coupling in heart failure. Heart Vessels 2003, 18:136–141.

    Article  PubMed  Google Scholar 

  38. Maurer MS: Hemodynamic mechanisms of ejection fraction improvement with chronic carvedilol treatment in heart failure: insights from three-dimensional echocardiography [abstract]. J Am Coll Cardiol 2003, 41(Suppl A):218A.

    Article  Google Scholar 

  39. Lechat P: Beta-blockade treatment in heart failure: the cardiac insufficiency bisoprolol study (CIBIS) project. CIBIS Committees and Investigators. Cardiac Insufficiency Bisoprolol Study. J Cardiovasc Pharmacol 1990, 16(Suppl 5):S158-S163.

    PubMed  Google Scholar 

  40. Lechat P: Beta-blocker treatment in heart failure. Role of heart rate reduction. Basic Res Cardiol 1998, 93(Suppl 1): 148–155.

    Article  PubMed  CAS  Google Scholar 

  41. Lechat P, Hulot JS, Escolano S, et al.: Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trial. Circulation 2001, 103:1428–1433.

    PubMed  CAS  Google Scholar 

  42. Genth-Zotz S, Zotz RJ, Sigmund M, et al.: MIC trial: metoprolol in patients with mild to moderate heart failure: effects on ventricular function and cardiopulmonary exercise testing. Eur J Heart Fail 2000, 2:175–181.

    Article  PubMed  CAS  Google Scholar 

  43. Maurer MS, Wajahat R, King DL, Burkhoff D: Ventricular pump function in patients with heart failure: stroke work and its relation to myocardial mass [abstract]. J Card Fail 2005, 11:S112.

    Article  Google Scholar 

  44. Burkhoff D, Maurer MS, Packer M: Heart failure with a normal ejection fraction: is it really a disorder of diastolic function? Circulation 2003, 107:656–658. Initial editorial that raised questions about the applicability of the diastolic dysfunction paradigm to all patients with HFNEF.

    Article  PubMed  Google Scholar 

  45. Zile MR, Brutsaert DL: New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment. Circulation 2002, 105:1503–1508.

    Article  PubMed  Google Scholar 

  46. Klapholz M, Maurer M, Lowe AM, et al.: Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York Heart Failure Registry. J Am Coll Cardiol 2004, 43:1432–1438.

    Article  PubMed  Google Scholar 

  47. Nitenberg A, Antony I, Loiseau A: Left ventricular contractile performance, ventriculoarterial coupling, and left ventricular efficiency in hypertensive patients with left ventricular hypertrophy. Am J Hypertens 1998, 11:1188–1198.

    Article  PubMed  CAS  Google Scholar 

  48. Cohen-Solal A, Caviezel B, Himbert D, Gourgon R: Left ventricular-arterial coupling in systemic hypertension: analysis by means of arterial effective and left ventricular elastances. J Hypertens 1994, 12:591–600.

    Article  PubMed  CAS  Google Scholar 

  49. Kawaguchi M, Hay I, Fetics B, Kass DA: Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 2003, 107:714–720. A cohort study of young controls, healthy elderly, elderly subjects with hypertension, and elderly subjects with HFNEF. It was the first to demonstrate, with invasive and noninvasive techniques, the presence of combined ventriculovascular stiffening in these patients.

    Article  PubMed  Google Scholar 

  50. Baicu CF, Zile MR, Aurigemma GP, Gaasch WH: Left ventricular systolic performance, function, and contractility in patients with diastolic heart failure. Circulation 2005, 111:2306–2312. A cohort study of patients using multiple techniques, both conductance catheter and echocardiographic indices of contractility, that demonstrated no decrease in ventricular performance in patients with diastolic HF.

    Article  PubMed  Google Scholar 

  51. Kitzman DW: Diastolic heart failure in the elderly. Heart Fail Rev 2002, 7:17–27.

    Article  PubMed  Google Scholar 

  52. Gandhi SK, Powers JC, Nomeir AM, et al.: The pathogenesis of acute pulmonary edema associated with hypertension. N Engl J Med 2001, 344:17–22.

    Article  PubMed  CAS  Google Scholar 

  53. Burkhoff D, Tyberg JV: Why does pulmonary venous pressure rise after onset of LV dysfunction: a theoretical analysis. Am J Physiol 1993, 265(Suppl 5, Pt 2):H1819-H1828.

    PubMed  CAS  Google Scholar 

  54. Hay I, Rich J, Ferber P, et al.: Role of impaired myocardial relaxation in the production of elevated left ventricular filling pressure. Am J Physiol Heart Circ Physiol 2005, 288:H1203-H1208.

    Article  PubMed  CAS  Google Scholar 

  55. Santamore WP, Burkhoff D: Hemodynamic consequences of ventricular interaction as assessed by model analysis. Am J Physiol 1991, 260(Suppl 1, Pt 2):H146-H157.

    PubMed  CAS  Google Scholar 

  56. Nussbacher A, Gerstenblith G, O’Connor FC, et al.: Hemodynamic effects of unloading the old heart. Am J Physiol 1999, 277(Suppl 5, Pt 2):H1863-H1871.

    PubMed  CAS  Google Scholar 

  57. Haber HL, Simek CL, Bergin JD, et al.: Bolus intravenous nitroglycerin predominantly reduces afterload in patients with excessive arterial elastance. J Am Coll Cardiol 1993, 22:251–257.

    Article  PubMed  CAS  Google Scholar 

  58. Vaitkevicius PV, Lane M, Spurgeon H, et al.: A cross-link breaker has sustained effects on arterial and ventricular properties in older rhesus monkeys. Proc Natl Acad Sci U S A 2001, 98:1171–1175.

    Article  PubMed  CAS  Google Scholar 

  59. Kass DA, Shapiro EP, Kawaguchi M, et al.: Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation 2001, 104:1464–1470.

    PubMed  CAS  Google Scholar 

  60. Bakris GL, Bank AJ, Kass DA, et al.: Advanced glycation endproduct cross-link breakers: a novel approach to cardiovascular pathologies related to the aging process. Am J Hypertens 2004, 17(Suppl 12, Pt 2):23S-30S.

    Article  PubMed  CAS  Google Scholar 

  61. Little WC, Zile MR, Kitzman DW, et al.: The effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure. J Card Fail 2005, 11:191–195.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, J.M., Maurer, M.S. Ventriculovascular coupling in systolic and diastolic heart failure. Curr Heart Fail Rep 2, 204–211 (2005). https://doi.org/10.1007/BF02696651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02696651

Keywords

Navigation