Log in

Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source, and the relationships of phoscorites and carbonatites from the Kovdor massif, Kola peninsula, Russia

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A detailed Sr−Nd isotopic study of primary apatite, calcite and dolomite from phoscorites and carbonatites of the Kovdor massif (380 Ma), Kola peninsula, Russia, reveals a complicated evolutionary history. At least six types of phoscorites and five types of carbonatite have been identified from Kovdor by previous investigators based on relative ages and their major and accessory minerals. Isotopic data from apatite define at least two distinct groups of phoscorite and carbonatite. Apatite from the earlier phoscorites and carbonatites (group 1) are characterized by relatively low87Sr/86Sr (0.70330–0.70349) and143Nd/144Nd initial ratios (0.51230–0.51240) with F=2.01–2.23 wt%, Sr=2185–2975 ppm, Nd=275–660 ppm and Sm=31.7–96.2 ppm. Apatite from the second group has higher87Sr/86Sr (0.70350–0.70363) and143Nd/144Nd initial ratios (0.51240–0.51247) and higher F (2.63–3.16 wt%), Sr (4790–7500 ppm), Nd (457–1074 ppm) and Sm (68.7–147.6 ppm) contents. This group corresponds to the later phoscorites and carbonatites. One apatite sample from a carbonatite from the earlier group fits into neither of the two groups and is characterized by the highest initial87Sr/86Sr (0.70385) and lowest143Nd/144Nd (0.51229) of any of the apatites. Within both groups initial87Sr/86Sr and143Nd/144Nd ratios show negative correlations. Strontium isotope data from coexisting calcite and dolomite support the findings from the apatite study. The Sr and Nd isotopic similarities between carbonatites and phoscorites indicate a genetic relationship between the two rock types. Wide variations in Sr and Nd isotopic composition within some of the earlier carbonatites indicate several distinct intrusive phases. Oxygen isotopic data from calcite and dolomite (δ18O=+7.2 to +7.7‰ SMOW) indicate the absence of any low-temerature secondary processes in phoscorites and carbonatites, and are consistent with a mantle origin for their parental melts. Apatite data from both groups of phoscorite plot in the depleted quadrant of an εNd versus εSr diagram. Data for the earlier group lie along the Kola Carbonatite Line (KCL) as defined by Kramm (1993) and data from the later group plot above the KCL. The evolution of the phoscorites and carbonatites cannot be explained by simple magmatic differentiation assuming closed system conditions. The Sr−Nd data can best be explained by the mixing of three components. Two of these are similar to the end-members that define the Kola Carbonatite Line and these were involved in the genesis of the early phoscorites and carbonatites. An additional component is needed to explain the isotopic characteristics of the later group. Our study shows that apatite from rocks of different mineralogy and age is ideal for placing constraints on mantle sources and for monitoring the Sr−Nd evolution of carbonatites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu NK, Mayila A (1986) Petrographic and chemical characteristics of the Panda Hill carbonatite complex. Tanzania. J Afr Earth Sci 5: 589–598.

    Article  Google Scholar 

  • Bayanova TB, Kirnarskii YuM, Gannibal LF, Kosheev, OA, Balashov YuA (1991) U-Pb dating of baddeleyite from Kovdor carbonatite complex (abstract in Russian). In: Methods of isotope geology Abstr St-Petersburg, 31.

  • Bell K, Blenkinsop J (1987) Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology 15: 99–102.

    Article  Google Scholar 

  • Bell K, Dawson JB (1995) Nd and Sr isotope systematics of the active carbonatite volcano, Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. (IAVCEI Proceedings in volcanology. no. 4) Springer-Verlag, Berlin Heidelberg New York, pp 100–112

    Google Scholar 

  • Bell K, Peterson T (1991) Nd and Sr isotope systematics of Shombole volcano, East Africa, and the links between nephelinites, phonolites, and carbonatites. Geology 19: 582–585.

    Article  Google Scholar 

  • Bell K, Plenkinsop J, Cole TJS, Menagh DP (1982) Evidence from Sr isotopes for long-lived heterogeneities in the upper mantle. Nature 298: 251–253.

    Article  Google Scholar 

  • Borodin LS, Lapin AV, Kharchenkov AG (1973) Rare-metal camaforites (in Russian). Nauka, Moscow

    Google Scholar 

  • Bulakh AG, Ivanikov VV (1984) Problems of mineralogy and petrology of carbonatites (in Russian). Leningrad Univ, Leningrad

    Google Scholar 

  • Clarke LB, Le Bas MJ, Spiro B (1994) Rare earth, trace element and stable isotope fractionation of carbonatites at Kruidfontein, Transvaal, S Africa. In: Kimberlite, related rocks and mantle xenoliths, In: Meyer HOA, Leonardos OH (eds) Proc 5th Kimberlite Conf, vol 1, CPRM, Rio de Janeiro, pp 236–251

  • Davies KA (1947) The phosphate deposits of the eastern province, Uganda. Econ Geol 42: 137–146.

    Google Scholar 

  • Deines P (1989) Stable isotope variations in carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution., Unwin Hyman, London, pp 301–359.

    Google Scholar 

  • Deines P, Gold DP (1973) The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochim Cosmochim Acta 37: 1709–1733

    Article  Google Scholar 

  • Deines P, Harris, JW, Gurney JJ (1987) Carbon isotopic composition, nitrogen content and inclusion composition of diamonds from the Roberts, Victor kimberlife, South Africa. Geochim Cosmochim Acta 51: 1227–1243

    Article  Google Scholar 

  • Dudkin OB, Minakov FV, Kravchenko MP, Kravchenko EV, Kulakov AN, Polezhaeva LI, Pripachkin VA, Pushkarev YuD, Rungenen GI (1984) Khbina carbonatites, (in Russian). Kola branch USSR Acad of Sci, Apatity

    Google Scholar 

  • Egorov LS (1984) Rare-earth element and fluorine contents of apatite as reflecting formation conditions alteration, and potential mineralization for rocks of the phoscorite-carbonatite group in ijolite-carbonatite complexes. Int Geol Rev 26: 93–107

    Google Scholar 

  • Egorov LS (1993) Phoscorites of the Maymecha-Kotuy ijolite-carbonatite association. Int Geol Rev 35: 346–358

    Google Scholar 

  • Epshteyn YeM, Danilchenko NA (1988) A spatial-genetic model of the Kovdor apatite-magnetite deposit, a carbonatite complex of the ultramafic, ijolite and carbonatite rock association. Int Geol Rev. 30: 981–993.

    Google Scholar 

  • Eriksson SC (1989) Phalaborwa: a saga of magmatism, metasomatism and miscibility. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 221–254

    Google Scholar 

  • Hart SR, Gerlach DC, White WM (1986) A possible new Sr-Nd-Pb mantle array and consequences for mantle mixing. Geochim Cosmochim Acta 50: 1551–1557

    Article  Google Scholar 

  • Henriquez F, Martin RF (1978) Crystal-growth textures in magnetite flows and feeder dykes, El Laco, Chile. Can Mineral 16: 581–589

    Google Scholar 

  • Hoefs J (1987) Stable isotope geochemistry. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Hogarth DD (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 105–148

    Google Scholar 

  • Johnson RL (1966) The Shawa and Dorowa carbonatite complexes, Rhodesia. In: Tuttle OF, Gittins J (eds) Carbonatites Wiley, New York, pp 205–224

    Google Scholar 

  • Kapustin YuL (1980) Mineralogy of carbonatites. Amerind Publishing, New Delhi

    Google Scholar 

  • Keller, J, Hoefs J (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. (IAVCEI Proceedings in volcanology, no 4) Springer-Verlag, Berlin, Heidelberg New York pp 113–123

    Google Scholar 

  • Kharlamov YeS, Kudryavtseva GP, Garanin VK, Korennova NG, Moskalyuk AA, Sandomirskaya SM, Shugurova NA (1981) Origin of carbonatites of the Kovdor deposit. Int Geol Rev 23: 865–880

    Google Scholar 

  • Kramm U (1993) Mantle components of carbonatites from the Kola Alkali Province. Russia, and Finland: a Nd-Sr study. Eur J Mineral 5: 985–989

    Google Scholar 

  • Kramm U, Kogarko LN, Kononova VA, Vartiainen H (1993) The Kola Alkaline Province of the CIS and Finland: precise Rb-Sr ages define 380–360 Ma age range for all magmatism. Lithos 30: 33–44

    Article  Google Scholar 

  • Krasnova NI, Kopylova LN (1988) The geologic basis for mineral-technological map** at the Kovdor ore deposit. Int Geol Rev 30: 307–319

    Google Scholar 

  • Kukharenko AA, Orlova MP, Boulakh AG, Bagdasarov EA, Rimskaya-Korsakova OM, Nefedov EI, Ilinsky GA, Sergeev AS, Abakumova NB (1965) The Caledonian complexes of ultrabasic-alkaline and carbonatite rocks on Kola peninsula and in Northern Karelia (geology, petrology, mineralogy and geochemistry) (in Russian). Nedra, Moscow

    Google Scholar 

  • Kyser TK (1986) Stable isotope variations in the mantle. In: Valley JW et al. (eds) Stable isotopes in high temperature geological processes. (Rev in mineralogy 16) Mineral Soc Am, Washington, DC, pp 141–164

    Google Scholar 

  • Lapin AV (1979) Mineral parageneses of apatite ores and carbonatites of the Seblyavr massif. Int Geol Rev 21: 1043–1052

    Google Scholar 

  • Lapin AV (1982) Carbonatite differentiation processes. Int Geol Rev 24: 1079–1089

    Article  Google Scholar 

  • Lapin AV, Vartiainen H (1983) Orbicular and spherulitic carbonatites from Sokli and Vuorijarvi. Lithos 16: 53–60

    Article  Google Scholar 

  • Le Maitre RW (ed) (1989) A classification of igneous rocks and glossary of terms recommendations of the IUGS Subcommission on the systematics of igneous rocks. Blackwell, Oxford.

    Google Scholar 

  • Nelson DR, Chivas AR, Chappel BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implication for the evolution of ocean-island sources. Geochim Cosmochim Acta 52: 1–17

    Article  Google Scholar 

  • Park CF (1961) A magnetite “flow” in Northern Chile. Econ Geol 56: 431–436

    Article  Google Scholar 

  • Philpotts AR (1967) Origin of certain iron-titanium oxide and apatite rocks. Econ Geol 62: 303–315

    Google Scholar 

  • Platt RG, Woolley AR (1990) The carbonatites and fenites of Chipman Lake, Ontario. Can Mineral 28: 241–250

    Google Scholar 

  • Pouliot G (1970) Study of carbonatitic calcites from Oka, Quebec. Can Mineral 10: 511–540

    Google Scholar 

  • Richard P, Shimizu N, Allègre CJ (1976)143Nd/146Nd, a natural tracer: an application to oceanic basalts. Earth Planet Sci Lett 31: 269–278

    Article  Google Scholar 

  • Rimskaya-Korsakova OM, Krasnova NI, Kopylova LN (1979) Typochimic special features of apatite from Kovdor complex deposit (in Russian). Mineral Geochem 6: 58–70

    Google Scholar 

  • Russell HD, Hiemstra SA, Groeneveld D (1954) The mineralogy and petrology of the carbonatite at Loolekop, Eastern Transvaal. Trans Geol Soc S Afr 57: 197–208

    Google Scholar 

  • Simonetti A, Bell K (1994) Nd, Pb and Sr isotopic data from the Napak carbonatite-nephelinite centre, eastern Uganda: an example of open-system crystal fractionation. Contrib Mineral Petrol 115: 356–366

    Article  Google Scholar 

  • Sokolov SV (1983) The genetic unity of the apatite-magnetite ores and carbonatites in alkali-ultrabasic intrusions. Geochem. Int 20: 86–98

    Google Scholar 

  • Sokolov SV (1985) Carbonates in ultramafic, alkali-rock and carbonatite intrusions. Geochem Int 22: 150–166

    Google Scholar 

  • Taylor HP, Frechen J, Degens ET (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alno district, Sweden. Geochim Cosmochim Acta 31: 407–430

    Article  Google Scholar 

  • Tilton GR, Kwon ST (1990) Isotopic evidence for crust-mantle evolution with emphasis on the Canadian Shield. Chem Geol 83: 149–163

    Article  Google Scholar 

  • van Straaten P (1989) Nature and structural relationships of carbonatites from Southwest and West Tanzania. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 177–199

    Google Scholar 

  • Verwoerd WJ (1993) Update on carbonatites of South Africa and Namibia. S Afr J Geol 96(3): 75–95

    Google Scholar 

  • Zaitsev A, Polezhaeva L (1994) Dolomite-calcite textures in early carbonatites of the Kovdor ore deposit, Kola peninsula, Russia: their genesis and application for calcite dolomite geothermometry. Contrib Mineral Petrol 115: 339–344

    Article  Google Scholar 

  • Zhabin AG (1971) Primary textural-structural features of carbonatites and their metamorphic evolution. Int Geol Rev 13: 1087–1096

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial responsibility: W. Schreyer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, A., Bell, K. Sr and Nd isotope data of apatite, calcite and dolomite as indicators of source, and the relationships of phoscorites and carbonatites from the Kovdor massif, Kola peninsula, Russia. Contr. Mineral. and Petrol. 121, 324–335 (1995). https://doi.org/10.1007/BF02688247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02688247

Keywords

Navigation