Log in

Localization of cell wall polysaccharides in nonarticulated laticifers ofAsclepias speciosa Torr.

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Asclepias speciosa Torr, has latex-containing cells known as nonarticulated laticifers. In stem sections of this species, we have analyzed the cell walls of nonarticulated laticifers and surrounding cells with various stains, lectins, and monoclonal antibodies. These analyses revealed that laticifer walls are rich in (1→4) β-D-glucans and pectin polymers. Immunolocalization of pectic epitopes with the antihomogalacturonan antibodies JIM5 and JIM7 produced distinct labeling patterns. JIM7 labeled all cells including laticifers, while JIM5 only labeled mature epidermal cells and xylem elements. Two antibodies, LM5 and LM6, which recognize rhamnogalacturonan I epitopes distinctly labeled laticifer walls. LM6, which binds to a (l→5) α-arabinan epitope, labeled laticifer walls more intensely than walls of other cells. LM5, which recognizes a (1→4) β-D-galac-tan epitope, did not label laticifer segments at the shoot apex but labeled more mature portions of laticifers. Also the LM5 antibody did not label cells at the shoot apical meristem, but as cells grew and matured the LM5 epitope was expressed in all cells. LM2, a monoclonal antibody that binds to β-D-glucuronic acid residues in arabinogalactan proteins, did not label laticifers but specifically labeled sieve tubes. Sieve tubes were also specifically labeled byRicinus communis agglutinin, a lectin that binds to terminal β-D-galactosyl residues. Taken together, the analyses conducted showed that laticifer walls have distinctive cytochemical properties and that these properties change along the length of laticifers. In addition, this study revealed differences in the expression of pectin and arabinogalactan protein epitopes during shoot development or among different cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FITC:

fluorescein isothiocyanate

HRP:

horse radish peroxidase

PAS:

periodic acid-Schiff s reagent

RCA:

Ricinus communis agglutinin

UEAI:

Uleus europaeus agglutininl

WGA:

Triticum vulgaris agglutinin

(β-D-Glc)3 (β-D-glucosyl)3 :

Yariv phenylglycoside

References

  • Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J (ed) The biochemistry of plants, vol 14. Academic Press, San Diego, pp 297–371

    Google Scholar 

  • Berlyn GP, Miksche JP (1976) Botanical microtechnique and cytochemistry. Iowa State University Press, Ames, Iowa

    Google Scholar 

  • Bremer K, Chase MW, Stevens PF, Anderberg AA, Backlund A, Bremer B, Briggs BG, Endress PK, Fay MF, Goldblatt P, Gustafs-son MHG, Hoot SB, Judd WS, Kallersjo M, Kellogg EA, Krön KA, Les DH, Morton CM, Nickrent DL, Olmstead RG, Price RA, Quinn CJ, Rodman JE, Rudall PJ, Savolainen V, Soltis DE, Soltis PS, Sytsma KJ, Thulin M (1998) An ordinal classification for the families of flowering plants. Ann Missouri Bot Gard 85: 531–553

    Article  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Cass DD (1985) Origin and development of the non-articulated lati-cifers ofJatropha dioica. Phytomorphology 35:133–140

    Google Scholar 

  • Cosgrove DJ (1999) Enzymes and other agents that enhance cell wall extensibility. Annu Rev Plant Physiol Plant Mol Biol 50: 391–417

    Article  PubMed  CAS  Google Scholar 

  • Dolan L, Linstead P, Roberts K (1997) Developmental regulation of pectin polysaccharides in the root meristem ofArabidopsis. J Exp Bot 48: 713–720

    Article  CAS  Google Scholar 

  • Ermel FF, Follet-Gueye M-L, Cibert C, Vian B, Morvan C, Catesson A-M, Golberg R (2000) Differential localization of arabinan and galactan side chains of rhamnogalacturonan I in cambial deriva-tives. Planta 210: 732–740

    Article  PubMed  CAS  Google Scholar 

  • Fahn A (1991) Plant anatomy, 4th edn. Pergamon Press, New York

    Google Scholar 

  • Femenia A, Garosi P, Roberts K, Waldron KW, Selvendran RR, Robertson JA (1998) Tissue related changes in methyl-esterifica-tion of pectic polysaccharides in cauliflower(Brassica oleracea L. var. botrytis) stems. Planta 205: 438–444

    Article  PubMed  CAS  Google Scholar 

  • Fineran BA (1983) Differentiation of non-articulated laticifers in poinsettia(Euphorbia pulcherrima Willd.). Ann Bot 52: 279–293

    Google Scholar 

  • Freshour G, Clay RP, Fuller MS, Albersheim P, Darvill AG, Hahn MG (1996) Developmental and tissue-specific structural alterations of the cell-wall polysaccharides ofArabidopsis thaliana roots. Plant Physiol 110: 1413–1429

    PubMed  CAS  Google Scholar 

  • Frey-Wyssling A (1942) über Zellwände mit Röhrentextur. Jahrb Wiss Bot 90: 705–730

    Google Scholar 

  • Harris PJ, Hartley RD, Barton GE (1982) Evaluation of stabilized diazonium salts for the detection of phenolic constituents of plant cell walls. J Sci Food Agric 33: 516–520

    Article  CAS  Google Scholar 

  • Heath IB (1990) Tip growth in plant and fungal cells. Academic Press, San Diego

    Google Scholar 

  • Hoson T (1991) Structure and function of plant cell walls: immuno-logical approaches. Int Rev Cytol 174: 195–291

    Google Scholar 

  • Hughes J, McCully ME (1975) The use of an optical brightener in the study of plant structure. Stain Technol 50: 319–329

    PubMed  CAS  Google Scholar 

  • Inamdar JA, Murungan V, Subramanian RB (1988) Ultrastructure of non-articulated laticifers inAllamanda violacea. Ann Bot 62: 583–588

    Google Scholar 

  • Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (l→4)-β-D-galactan. Plant Physiol 113: 1405–1412

    PubMed  CAS  Google Scholar 

  • Knox JP (1997) The use of antibodies to study the architecture and developmental regulation of cell walls. Int Rev Cytol 171: 79–120

    PubMed  CAS  Google Scholar 

  • — Linstead PL, King L, Cooper C, Roberts K (1990) Pectin esterifi-cation is spatially regulated both within cell walls and develo** tissues of root apices. Planta 181: 512–521

    Article  CAS  Google Scholar 

  • Krishnamurthy KV (1999) Methods in cell wall cytochemistry. CRC Press, Boca Raton, Fla

    Google Scholar 

  • Li Y-Q, Chen F, Linskens HF, Cresti M (1994) Distribution of unes-terified and esterified pectins in cell walls of pollen tubes of flow-ering plants. Sex Plant Reprod 7:145–152

    Google Scholar 

  • Lynch MA, Staehelin LA (1995) Immunocytochemical localization of cell wall polysaccharides in the root tipof Avena saliva. Proto-plasma 188:115–127

    CAS  Google Scholar 

  • Mahlberg PG (1963) Development of non-articulated laticifers in seedling axis ofNerium oleander. Bot Gaz 124: 224–231

    Article  Google Scholar 

  • — (1993) Laticifers: an historical perspective. Bot Rev 59:1–23

    Google Scholar 

  • — (1968) Origin and early development of non-articulated laticifers in embryos ofEuphorbia marginata. Am J Bot 55: 375–381

    Article  Google Scholar 

  • Moody SF, Clarke AE, Bacic A (1988) Structural analysis of secreted slime from wheat and cowpea roots. Phytochemistry 27: 2857–2861

    Article  CAS  Google Scholar 

  • Moore PJ, Staehelin A (1988) Immunogold localization of cell wall matrix polysaccharides rhamnogalacturonan I and xyloglucan during cell expansion and cytokinesis inTrifolium pratense L.: implication for secretory pathway. Planta 174: 433–445

    Article  CAS  Google Scholar 

  • Nothnagel EA (1997) Proteoglycans and related components in plant cells. Int Rev Cytol 174:195–291

    PubMed  CAS  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls with toluidine blue O. Protoplasma 59: 368–373

    Article  CAS  Google Scholar 

  • Orfila C, Knox JP (2000) Spatial regulation of pectin polysaccha-rides in relation to pit fields in cell walls of tomato fruit pericarp. Plant Physiol 122:775–781

    Article  PubMed  CAS  Google Scholar 

  • Rae AL, Harris PJ, Bacic A, Clarke AE (1985) Composition of the cell walls ofNicotiana alata Link et Otto pollen tubes. Planta 166: 128–133

    Article  CAS  Google Scholar 

  • Roy AT, De Dn (1992) Studies on the differentiation of laticifers through light and electron microscopy inCalotropis gigantea (Linn.) R. Br. Ann Bot 70: 443–449

    Google Scholar 

  • Rudall P (1994) Laticifers in Crotonoideae (Euphorbiaceae): homology and evolution. Ann Missouri Bot Gard 81: 270–282

    Article  Google Scholar 

  • Scott JE (1970) Histochemistry of Alcian Blue I: metachromasia of Alcian Blue, Astrablau and other cationic phthalocyanin dyes. Histochemie 21: 129–133

    Article  Google Scholar 

  • Serpe MD, Nothnagel EA (1994) Effects of Yariv phenylglycosides onRosa cell suspensions: evidence for the involvement of arabinogalactan-proteins in cell proliferation. Planta 193:542–550

    Article  CAS  Google Scholar 

  • —— (1999) Arabinogalactan-proteins in the multiple domains of the plant cell surface. Adv Bot Res 30: 207–289

    Article  CAS  Google Scholar 

  • Stone BA, Evans NA, Bonig I, Clarke AE (1964) The application of Sirofluor, a chemically defined fluorochrome from aniline blue, for the histochemical detection of callose. Protoplasma 122:191–195

    Article  Google Scholar 

  • Vicré M, Jauneau A, Knox JP, Driouich A (1998) Immunolocaliza-tion of β-(l→4) and β-(l→6)-D-galactan epitopes in the cell wall and Golgi stacks of develo** flax root tissues. Protoplasma 203: 26–34

    Article  Google Scholar 

  • Vreeland V, Morse SR, Robichaux RH, Miller KL, Hua S-ST, Laetsch WM (1989) Pectate distribution and esterification inDubautia leaves and soybean nodules, studied with a fluorescent hybridization probe. Planta 177: 435–446

    Article  CAS  Google Scholar 

  • Willats WGT, Marcus SE, Knox JP (1998) Generation of a monoclonal antibody specific to (1→5)-α-L-arabinan. Carbohydr Res 308:149–152

    Article  PubMed  CAS  Google Scholar 

  • — Limberg G, Buchholt HC, van Alebeek G-J, Benen J, Christensen TMIE, Visser J, Voragen A, Mikkelsen JD, Knox JP (2000) Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydr Res 327:309–320

    Article  PubMed  CAS  Google Scholar 

  • Wilson KJ, Nessler CL, Mahlberg PG (1976) Pectinase in Asclepias latex and its possible role in laticifer growth and development. Am J Bot 63: 1140–1144

    Article  CAS  Google Scholar 

  • Yariv J, Rapport MM, Graf L (1962) The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. Biochem J 85: 383–388

    PubMed  CAS  Google Scholar 

  • Yates EA, Valdor J-F, Haslam SM, Morris HR, Dell A, Mackie W, Knox JP (1996) Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6:131–139

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo D. Serpe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serpe, M.D., Muir, A.J. & Keidel, A.M. Localization of cell wall polysaccharides in nonarticulated laticifers ofAsclepias speciosa Torr.. Protoplasma 216, 215–226 (2001). https://doi.org/10.1007/BF02673873

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02673873

Keywords

Navigation