Log in

Generalized computable numerations and nontrivial rogers semilattices

  • Published:
Algebra and Logic Aims and scope

Abstract

We outline the general approach to the notion of a computable numeration in the frames of which computable numerations, of families of arithmetic sets are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Rogers,Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).

    MATH  Google Scholar 

  2. Yu. L. Ershov,Numeration Theory [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  3. Yu. L. Ershov,Decidability Problems and Constructive Models [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  4. A. I. Mal'tsev,Algorithms and Recursive Functions [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  5. S. C. Kleene,Introduction to Metamathematics, Princeton, N. J. (1952).

  6. A. N. Kolmogorov and V. A. Uspenskii, “Defining an Algorithm,”Usp. Mat. Nauk, 13, No. 4 (82), 2–28 (1958).

    Google Scholar 

  7. V. A. Uspenskii, “Systems of denumerable sets and their numerations,”Dok. Akad. Nauk SSSR, 105, No. 6, 1155–1158 (1955).

    Google Scholar 

  8. V. A. Uspenskii,Lectures on Computable Functions [in Russian], Fizmatgiz, Moscow (1960).

    Google Scholar 

  9. H. Rogers, “Gödel numberings of partial recursive functions,”J. Symb. Log., 23, No. 3, 331–341 (1958).

    Article  Google Scholar 

  10. R. F. Friedberg, “Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication,”J. Symb. Log., 23, No. 3, 309–316 (1958).

    Article  Google Scholar 

  11. I. A. Lavrov, “Computable numberings,” inProc. 5th Int. Congr. Logic, Methodology and Philosophy of Science, Part 1, Reidel, Dordrecht (1977), pp. 195–206.

    Google Scholar 

  12. M. B. Pour-El, “Gödel numberings versus Friedberg numberings,”Proc. Am. Math. Soc., 15, No. 2, 252–256 (1964).

    Article  MATH  Google Scholar 

  13. M. B. Pour-El and H. Putnam, “Recursively enumerable classes and their applications to sequence of formal theories,”Arch. Math. Log. Gr., 8, 104–121 (1965).

    Article  MATH  Google Scholar 

  14. S. S. Goncharov, “The problem of the number of non-autoequivalent constructivizations,”Dokl. Akad. Nauk SSSR, 251, No. 2, 271–274 (1980).

    Google Scholar 

  15. A. I. Maltsev, “Toward a theory of computable families of objects,”Algebra Logika, 3, No. 4, 5–31 (1964).

    Google Scholar 

  16. S. S. Goncharov, A. Yakhnis and V. Yakhnis, “Some effectively infinite classes of enumerations,”Ann. Pure Appl. Log., 60, 207–235 (1993).

    Article  MATH  Google Scholar 

  17. Yu. L. Ershov,Definability and Computability [in Russian], Nauch. Kniga, Novosibirsk (1996).

    Google Scholar 

  18. A. B. Khutoretskii, “On the cardinality of the upper semilattice of computable numerations,”Algebra Logika, 10, No. 5, 561–569 (1971).

    Google Scholar 

Download references

Authors

Additional information

Supported by RECO grant NERBCHRXCT 930415 and by RFFR grant No. 096-01-01525

Supported by RECO grant NERBCIPDCT 940615

Translated fromAlgebra i Logika, Vol. 36, No. 6, pp. 621–641, November-December, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncharov, S.S., Sorbi, A. Generalized computable numerations and nontrivial rogers semilattices. Algebr Logic 36, 359–369 (1997). https://doi.org/10.1007/BF02671553

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02671553

Keywords

Navigation