Log in

Oxygen potentials in Ni + NiO and Ni + Cr2O3 + NiCr2O4 systems

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The chemical potential of O for the coexistence of Ni + NiO and Ni + Cr2O3 + NiCr2O4 equilibria has been measured employing solid-state galvanic cells, (+) Pt, Cu + Cu2O // (Y2O3)ZrO2 // Ni + NiO, Pt (-) and (+) Pt, Ni + NiO // (Y2O3)ZrO2 // Ni + Cr2O3 + NiCr2O4, Pt (-) in the temperature range of 800 to 1300 K and 1100 to 1460 K, respectively. The electromotive force (emf) of both the cells was reversible, reproducible on thermal cycling, and varied linearly with temperature. For the coexistence of the two-phase mixture of Ni + NiO, δΜO 2(Ni + NiO) = −470,768 + 171.77T (±20) J mol−1 (800 ≤T ≤ 1300 K) and for the coexistence of Ni + Cr2O3 + NiCr2O4, δΜO 2(Ni + Cr2O3 + NiCr2O4) = −523,190 + 191.07T (±100) J mol−1 (1100≤ T≤ 1460 K) The “third-law” analysis of the present results for Ni + NiO gives the value of ‡H o298 = -239.8 (±0.05) kJ mol−1, which is independent of temperature, for the formation of one mole of NiO from its elements. This is in excellent agreement with the calorimetric enthalpy of formation of NiO reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. J.D. Tretjakow and H. Schmalzried:Ber. Bensenges. Phys. Chem., 1965, vol. 69, pp. 396–402.

    Google Scholar 

  2. H. Davies and W.W. Smeltzer:J. Electrochem. Soc, 1974, vol. 121, pp. 543–49.

    CAS  Google Scholar 

  3. W. Kunnmann, D.B. Rogers, and A. Wold:J. Phys. Chem. Solids, 1963, vol. 24, pp. 1535–38.

    Article  CAS  Google Scholar 

  4. S.C. Schaefer: Rept. Invest. No. 9043, U.S. Bureau of Mines, Albany, OR, 1986.

  5. S.C. Kung:Metall. Trans. B, 1991, vol. 22B, pp. 673–75.

    CAS  Google Scholar 

  6. F. Muller and O.J. Kleppa:J. Inorg. Nucl. Chem., 1973, vol. 35, pp. 2673–78.

    Article  Google Scholar 

  7. R.D. Holmes, H. St. C. O'Neill, and R.J. Arculus:Geochim. Cosmochim. Acta, 1986, vol. 50, pp. 2439–52.

    Article  CAS  Google Scholar 

  8. C.B. Alcock and B. Li:J. Am. Ceram. Soc, 1990, vol. 73, pp. 1176–80.

    Article  CAS  Google Scholar 

  9. G.M. Kale and D.J. Fray: University of Leeds, Leeds, unpublished research, 1992.

  10. M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syerud:JANAF Thermochemical Tables, 3rd ed., American Chemical Society and American Institute of Physics, National Bureau of Standards, Gaithersburg, MD, 1985.

    Google Scholar 

  11. L.B. Pankratz:Thermodynamic Properties of Elements and Oxides, U.S. Bureau of Mines, Bull. 672, U.S. Government Printing Office, Washington, D.C., 1982.

    Google Scholar 

  12. A.D. Mah, L.B. Pankratz, W.W. Weiler, and E.G. King: Rept. Invest. No. 7026, U.S. Bureau of Mines, Albany, OR, 1967.

  13. B.J. Boyle, E.G. King, and K.C. Conway:J. Am. Chem. Soc, 1954, vol. 76, pp. 3835–37.

    Article  CAS  Google Scholar 

  14. K.T. Jacob and C.B. Alcock:Metall. Trans. B, 1975, vol. 6B, pp. 215–21.

    Article  CAS  Google Scholar 

  15. J.D. Dunitz and L.E. Orgel:J. Phys. Chem. Solids, 1957, vol. 3, pp. 318–23.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kale, G.M., Fray, D.J. Oxygen potentials in Ni + NiO and Ni + Cr2O3 + NiCr2O4 systems. Metall Mater Trans B 25, 373–378 (1994). https://doi.org/10.1007/BF02663386

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663386

Keywords

Navigation