Log in

Failure mechanisms in SiC-fiber reinforced 6061 aluminum alloy composites under monotonic and cyclic loading

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Micromechanisms influencing crack propagation in a unidirectional SiC-fiber (SCS-8) continuously reinforced Al-Mg-Si 6061 alloy metal-matrix composite (SiCf/Al-6061) during monotonie and cyclic loading are examined at room temperature, both for the longitudinal (0 deg or L-T) and transverse (90 deg or T-L) orientations. It is found that the composite is insensitive to the presence of notches in the L-T orientation under pure tension loading due to the weak fiber/matrix interface; notched failure strengths are ∼1500 MPa compared to 124 MPa for unreinforced 6061. However, behavior is strongly dependent on loading configuration, specimen geometry, and orientation. Specifically, properties in SiCf/Al in the T-L orientation are inferior to unreinforced 6061, although the composite does exhibit increasing crack-growth resistance with crack extension (resistance-curve behavior) under monotonie loading; peak toughnesses of ∼16 MPa√m are achieved due to crack bridging by the continuous metal phase between fibers and residual plastic deformation in the crack wake. In contrast, such bridging is minimal under cyclic loading, as the ductile phase fails subcritically by fatigue such that the transverse fatigue crack-growth resistance is superior in the unreinforced alloy, particularly at high stress-intensity levels. Conversely, fatigue cracks are bridged by unbroken SiC fibers in the L-T orientation and exhibit marked crack deflection and branching; the fatigue crack-growth resistance in this orientation is clearly superior in the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. InMetal Matrix Composites: Mechanisms and Properties, R.K. Everett and R.J. Arsenault, eds., Academic Press, New York, NY, 1991.

    Google Scholar 

  2. S.V. Nair, J.K. Tien, and R.C. Bates:Int. Met. Rev., 1985, vol. 30, pp. 275–90.

    CAS  Google Scholar 

  3. J.E. King:Met. Mater., 1989, vol. 5, pp. 720–25.

    CAS  Google Scholar 

  4. E.A. Feest:Met. Mater., 1988, vol. 4, pp. 273–78.

    CAS  Google Scholar 

  5. K.J. Bhansali and R. Mehrabian:J. Met., 1982, vol. 34 (9), pp. 30–34.

    Google Scholar 

  6. A.P. Divecha, S.G. Fishman, and S.D. Karmarkar:J. Met., 1981, vol. 33 (9), pp. 12–17.

    CAS  Google Scholar 

  7. M. Manoharan and J.J. Lewandowski:Acta Metall., 1990, vol. 38, pp. 489–96.

    Article  CAS  Google Scholar 

  8. S.V. Kamat, J.P. Hirth, and R. Mehrabian:Acta Metall., 1989, vol. 39, pp. 2395–402.

    Google Scholar 

  9. Y. Flom and R.J. Arsenault:Acta Metall., 1989, vol. 37, pp. 2413–23.

    Article  CAS  Google Scholar 

  10. J. Stephens, J.P. Lucas, and F.M. Hosking:Scripta Metall., 1988, vol. 22, pp. 1307–12.

    Article  CAS  Google Scholar 

  11. C.R. Saff, D.M. Harmon, and W.S. Johnson:J. Met., 1988, vol. 40(11), pp. 58–63.

    CAS  Google Scholar 

  12. W.S. Johnson: inMetal Matrix Composites: Testing, Analysis and Failure Modes, ASTM STP 1032, W.S. Johnson, ed., ASTM, Philadelphia, PA, 1989, pp. 194–221.

    Google Scholar 

  13. W.S. Johnson and R. R. Walls: inComposite Materials: Fatigue and Fradure, ASTM STP 907, H.T. Hahn, ed., ASTM, Philadelphia, PA, 1986, pp. 161–75.

    Google Scholar 

  14. Y.H. Park, D. Narayen, M. Schmerling, and H.L. Marcus:J. Mater. Sci., 1984, vol. 19, pp. 2239–45.

    Article  CAS  Google Scholar 

  15. P. Soumelidis, J.M. Quenisset, R. Naslain, and N.S. Stoloff:J. Mater. Sci., 1986, vol. 21, pp. 895–903.

    Article  CAS  Google Scholar 

  16. K.S. Chan and D.L. Davidson:Metall. Trans. A, 1990, vol. 21A, pp. 1603–12.

    CAS  Google Scholar 

  17. D.L. Davidson, K.S. Chan, A. McMinn, and G.R. Leverant:Metall. Trans. A, 1989, vol. 20A, pp. 2369–78.

    CAS  Google Scholar 

  18. D. Walls, G. Bao, and F. Zok: inFatigue of Advanced Materials, R.O. Ritchie, R.H. Dauskardt, and B.N. Cox, eds., Materials and Component Engineering Publ. Ltd., Birmingham, United Kingdom, 1991, pp. 343–56.

    Google Scholar 

  19. P. Kantzos, J. Telesman, and L. Ghosn: inComposite Materials: Fatigue and Fracture, ASTM STP 1110, T.K. O’Brien, ed., ASTM, Philadelphia, PA, 1991, vol. III, pp. 711–31.

    Google Scholar 

  20. R. John and N.E. Ashbaugh: inTitanium Aluminide Composites, P.R. Smith, S.J. Balsone, and T. Nicholas, eds., Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH, 1991, pp. 497–510.

    Google Scholar 

  21. B.N. Cox, M.S. Dadkhah, M.R. James, D.B. Marshall, W.L. Morris, and M. Shaw:Acta Metall., 1990, vol. 38, pp. 2425–33.

    Article  CAS  Google Scholar 

  22. A.G. Evans and D.B. Marshall:Acta Metall., 1989, vol. 37, pp. 2567–83.

    Article  CAS  Google Scholar 

  23. Anon:Continuous Silicon Carbide Metal Matrix Composites, Textron Specialty Materials, Lowell, MA, 1992.

  24. V. Laurent, D. Chatain, and N. Eustathopoulos:J. Mater. Sci., 1987, vol. 22, pp. 244–50.

    Article  CAS  Google Scholar 

  25. B. Budiansky, J.W. Hutchinson, and A.G. Evans:J. Mech. Phys. Sol., 1986, vol. 34, pp. 167–89.

    Article  Google Scholar 

  26. S. Jansson, H.E. Dève, and A.G. Evans:Metall. Trans. A, 1991, vol. 22A, pp. 2975–84.

    CAS  Google Scholar 

  27. Y. Flom and R.J. Arsenault:Mater. Sci. Eng., 1976, vol. 77, pp. 191–97.

    Google Scholar 

  28. R.H. Dauskardt and R.O. Ritchie:Closed Loop, 1989, vol. 27, pp. 7–17.

    Google Scholar 

  29. Anon:Metals Handbook, 9th ed., ASTM, Metals Park, OH, 1985, vol. 8, pp. 376-402.

  30. R.O. Ritchie, W. Yu, and R.J. Bucci:Eng. Fract. Mech., 1989, vol. 32, pp. 361–77.

    Article  Google Scholar 

  31. O.L. Bowie and C.E. Freese:Int. J. Fract., 1972, vol. 8, pp. 49–58.

    Article  Google Scholar 

  32. J.G. Williams: inApplication of Fracture Mechanics to Composite Materials, K. Friedrich, ed., Elsevier, New York, NY, 1989, pp. 3–38.

    Google Scholar 

  33. Z. Suo and J.W. Hutchinson:Mater. Sci. Eng., 1989, vol. A107, pp. 135–43.

    Google Scholar 

  34. H. Tada, P.C. Paris, and G.R. Irwin:The Stress Analysis of Cracks Handbook, Del Research, St. Louis, MO, 1985.

    Google Scholar 

  35. D.B. Marshall, W.L. Morris, B.N. Cox, and M.S. Dadkhah:J. Am. Ceram. Soc, 1990, vol. 73, pp. 2938–43.

    Article  CAS  Google Scholar 

  36. J.R. Rice:J. Appl. Mech., 1988, vol. 55, pp. 98–103.

    Article  Google Scholar 

  37. K.T. Venkateswara Rao, G. R. Odette, and R.O. Ritchie:Acta Metall. Mater., 1992, vol. 40, pp. 353–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, K.T.V., Siu, S.C. & Ritchie, R.O. Failure mechanisms in SiC-fiber reinforced 6061 aluminum alloy composites under monotonic and cyclic loading. Metall Trans A 24, 721–734 (1993). https://doi.org/10.1007/BF02656640

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02656640

Keywords

Navigation