Log in

Modeling of particles impacting on a rigid substrate under plasma spraying conditions

  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Finite-element methods have been applied for the spreading process of a ceramic liquid droplet impacting on a flat cold surface under plasma spraying conditions. The goals of the present investigation are to predict the geometrical form of the splat as a function of process parameters, such as initial temperature and velocity, and to follow the thermal field develo** in the droplet up to solidification. A nonlinear finite-element procedure has been extended to model the complex physical phenomena involved in the impact process. The dynamic motion of the viscous melt in the drops as constrained by elastic surface tensions and in interaction with the develo** contact with the target has been coupled to transient thermal phenomena to account for the solidification of the material. A model is used to study the impact of spherical particles of liquid ceramic of given temperature and velocity on a flat, cool rigid surface. The deformation of the splat geometry as well as the evolution of the thermal field within the splat are followed up to the final state and require adaptive discretization techniques. The proposed model can be used to correlate flattening degrees with the initial process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Zaat, A Quarter Century of Plasma Spraying,Ann. Rev. Mater. Sci., Vol 13,1983, p 9–42

    Article  CAS  Google Scholar 

  2. A. Vardelle, M. Vardelle, and P. Fauchais, Les Transfers de Quantité de Mouvement et de Chaleur Plasma Particules Solides dans un Plasma d’Arc en Estinction,Rev. Int. Hautes Temp. Refract., Vol 23, 1986, p 69–85 (in French)

    CAS  Google Scholar 

  3. P. Fauchais, A. Grimaud, A. Vardelle, and M. Vardelle, La Projection par Plasma: Une Revue,Ann. Phys., Vol 14, 1989, p 261–310 (in French)

    CAS  Google Scholar 

  4. D.S. Rickerby, G. Eckold, K.T. Scott, and I.M. Buckley-Golder, The Interrelationship between Internal Stress, Processing Parameters and Mi- crostructure of Physically Vapor Deposited and Thermally Sprayed Coatings,Thin Solid Films, Vol 154,1987, p 125–141

    Article  CAS  Google Scholar 

  5. R. McPherson, A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings,Surf. Coat. Technot., Vol 39–40, 1989, p 173–181

    Article  Google Scholar 

  6. J. Mishin, M. Vardelle, J. Lesinski, and P. Fauchais, Two Colour Pyrometer for the Statistical Measurement of Pariticulate Surface Tem- perature under Thermal Plasma Conditions,J. Phys. E, Vol E20,1987, p 620

    Article  Google Scholar 

  7. C. Moreau, P. Cielo, and M. Lamontagne, Flattening and Solidification of Thermal Sprayed Particles,Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, 1992, p 761-766

  8. S. Fantassi, M. Vardelle, P. Fauchais, and C. Moreau, Investigation of the Splat Formation versus Different Particulate Temperatures and Velocities prior to Impact,Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, 1992, p 755-760

  9. A.M. Worthington,A Study of Splashes, MacMillan, 1963

  10. G. Trapaga, E.F. Matthys, J.J. Valencia, and J. Szekely, Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Im**ing on Substrates: Comparison of Numerical and Experimental Results,Metall. Trans. B, Vol 23B, 1992, p 701–718

    CAS  Google Scholar 

  11. O. Knotek and R. Elsing, Monte Carlo Simulation of the Lamellar Structure of Thermally Sprayed Coatings,Surf. Coat. Technol,Vol 32, 1987, p 261–271

    Article  CAS  Google Scholar 

  12. S. Cirolini, J.H. Harding, and G. Jacucci, Computer Simulation of Plasma-Sprayed Coatings: I. Coating Deposition Model,Surf. Coat. Technol., Vol 48,1991, p 137–145

    Article  Google Scholar 

  13. J. Madejski, Solidification of Droplets on a Cold Surface,J. Heat Mass Transfer, Vol 19,1976, p 1009–1013

    Article  Google Scholar 

  14. G. Trapaga and J. Szekely, Mathematical Modeling of the Isothermal Im**ement of Liquid Droplets in Spraying Processes,Metall. Trans. B, Vol 22B, 1991, p 901–914

    CAS  Google Scholar 

  15. T. Yoshida, T. Okada, H. Hideki, and H. Kumaoka, Integrated Fabrication Process for Solid Oxide Fuel Cells using Novel Plasma Spraying,Plasma Sources Sci. Technol, Vol 1,1992, p 195–201

    Article  CAS  Google Scholar 

  16. S. Fantassi, M. Vardelle, A. Vardelle, and P. Fauchais, Influence of the Velocity of Plasma Sprayed Particles on the Splat Formation,Thermal Spray Coatings: Research, Design and Applications, C.C. Berndt, Ed., ASM International, 1993, p 1-6

  17. J.M. Houben, Future Developments in Thermal Spraying,Thermal Spray Coatings: New Materials, Processes and Applications, F.N. Longo, Ed., ASM International, 1985, p 1-19

  18. J.M. Houben, “Relation of the Adhesion of Plasma Sprayed Coatings to the Process Parameters Size, Velocity and Heat Content of the Spray Particles,” Ph.D. thesis, Technische Universiteit, Eindhoven, The Netherlands, 1988

    Google Scholar 

  19. M. Bertagnolli, M. Marchese, G. Jacucci, I.St. Doltsinis, and S. Noelt- ing, Finite Element Thermomechanical Simulation of Droplets Impacting on a Rigid Substrate,Materials and Design Technology 1994, Vol 62, T.J. Kozik, Ed., American Society of Mechanical Engineers, 1994, p 199-210

  20. J. Argyris, I.St. Doltsinis, H. Fischer, and H. Wüstenberg, \(T\alpha \pi \mathop \alpha \limits^\prime \nu \tau \alpha \rho \varepsilon \tilde \iota \) Computer Meth. Appl. Mech. Eng., Vol 51, 1985, p 289–362

    Article  Google Scholar 

  21. I.St. Doltsinis, J. Luginsland, and S. Nölting, Some Developments in the Numerical Simulation of Metal Forming Processes,Eng. Comput., Vol 4,1987, p 266–280

    Google Scholar 

  22. I.St. Doltsinis, Aspects of Modelling and Computation in the Analysis of Metal Forming,Eng. Comput., Vol 7,1990, p 2–20

    Google Scholar 

  23. I.St. Doltsinis, Coupled Field Problems—Solution Techniques for Sequential and Parallel Processing,Solving Large Scale Problems in Mechanics, M. Papadrakakis, Ed., John Wiley & Sons, 1993

  24. I.St. Doltsinis and S. Nölting, Generation and Decomposition of Finite Element Models for Parallel Computations,Comput. Sys. Eng., Vol 2, 1992, p 427–449

    Article  Google Scholar 

  25. I.St. Doltsinis, M. Eggers, S. Nölting, and G. Nötzel, “Finite Element Modelling of Ceramic Thermal Barrier Coatings to Extend the Operating Range of Heat Engine Components,” 1st Internal Work Report, ICA-Stuttgart, 1992

  26. M. Vardelle, A. Vardelle, P. Fauchais, and C. Moreau, Pyrometer System for Monitoring the Particle Impact on a Substrate during a Plasma Spray Process,Meas. Sci. TechnoL, Vol 5,1994, p 205–212

    Article  CAS  Google Scholar 

  27. J.H. Harding, private communication, AEA Technology, Didcot, U.K., 1993

  28. J.L. Fink, M.G. Chasanov, and L. Leibowitz, “Transport Properties of Uranium Dioxide,” ANL-CEN-RSD-80-4, Argonne National Laboratory Report, 1981

  29. R. Westhoff, G. Trapaga, and J. Szekely, Plasma-Particle Interactions in Plasma Spraying Systems,Metall. Trans. B, Vol 23B, 1992, p 683–693

    CAS  Google Scholar 

  30. H. Wüstemberg, “FEPS 3.3 Finite Element Programming System: User’s Guide,” ICA Report No. 21, Stuttgart, 1986; “FEPS 3.3: Elements Library,” ICA Report No. 22, Stuttgart, 1986

  31. “Modeling and Characterization of the Manufacturing Process of Ceramic Thermal Barrier Coatings,” BRITE/EURAM Project No. BREU-0418, Second periodical report, CEC, Brussels, 1992

  32. “Modeling and Characterization of the Manufacturing Process of Ceramic Thermal Barrier Coatings,” BRITE/EURAM Project No. BREU-0418, Third periodical report, CEC, Brussels, 1993

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertagnolli, M., Marchese, M. & Jacucci, G. Modeling of particles impacting on a rigid substrate under plasma spraying conditions. JTST 4, 41–49 (1995). https://doi.org/10.1007/BF02648527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648527

Keywords

Navigation