Log in

Growth and differentiation of human keratinocytes without a feeder layer or conditioned medium

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

An improved procedure has been developed for clonal growth of normal human epidermal keratinocytes (HK) without feeder cells or conditioned medium. The use of medium 199, supplemented with 0.4 μg/ml hydrocortisone (HC) and 20% (v/v) whole fetal bovine serum (wFBS) and conditioned overnight by 3T3 cells, eliminated the need for a feeder layer of lethally irradiated 3T3 cells for HK growth. Several other media with equivalent conditioning and supplementation failed to support satisfactory multiplication of HK, including Dulbecco's modified Eagle's medium, which is normally used for growth of HK with a feeder layer. Increasing the concentration of HC to 10 μg/ml (2.8×10−5 M) made possible clonal growth of HK without any conditioning of the medium. The addition of 10−5 M putrescine, 10−5 M vitamin B12, or 3.7×10−6 M β-estradiol further enhanced growth in unconditioned medium. Substantially greater improvement was obtained by the addition of pituitary extract or fractions prepared from pituitary extract. In medium 199 supplemented with 10 μg/ml HC, 20% (v/v) wFBS, and 0.15 mg/ml each of two pituitary fractions, single HK attach with a colony-forming efficiency equal to that in conditioned medium and form stratified, keratinized colonies that grow to confluency and can be subcultured. These results make it clear that HK do not require special “conditioning factors” from fibroblasts for clonal growth and differentiation in culture. Thus, factors directly involved in growth and the expression of differentiation can be analyzed without the interfering effects of any other type of cell. Preliminary studies with epidermal growth factor (EGF), which stimulates growth and extends life span of HK grown in the presence of fibroblasts, have shown that, in the absence of fibroblasts, EGF has no effect either on clonal growth or on cumulative multiplication potential of HK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rheinwald, J. G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell 6: 331–344; 1975.

    Article  PubMed  CAS  Google Scholar 

  2. Rheinwald, J. G.; Green, H. Formation of keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell 6: 317–330; 1975.

    Article  PubMed  CAS  Google Scholar 

  3. Ham, R. G.; McKeehan, W. I. Nutritional requirements for clonal growth of nontransformed cells. Katsuta, H. ed. Nutritional requirements of cultured cells. Tokyo: Japan Scientific Societies Press; 1978: 63–115.

    Google Scholar 

  4. Rheinwald, J. G.; Green, H. Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes. Nature 265: 421–424; 1977.

    Article  PubMed  CAS  Google Scholar 

  5. McKeehan, W. L. The effect of temperature during trypsin treatment on viability and multiplication potential of single normal human and chicken fibroblasts. Cell Biol. Int. Rep. 1: 335–343; 1977.

    Article  PubMed  CAS  Google Scholar 

  6. Morgan, J. F.; Morton, H. J.; Parker, R. C. Nutrition of animals cells in tissue culture. I. Initial studies on a synthetic medium. Proc. Soc. Exp. Biol. Med. 73: 1–8; 1950.

    PubMed  CAS  Google Scholar 

  7. McKeehan, W. L.; McKeehan, K. A.; Hammond, S. L.; Ham, R. G. Improved medium for clonal growth of human diploid fibroblasts at low concentrations of serum protein. In Vitro 13: 399–416; 1977.

    Article  PubMed  CAS  Google Scholar 

  8. McKeehan, W. L.; Ham, R. G. Stimulation of clonal growth of normal fibroblasts with substrata coated with basic polymers. J. Cell Biol. 71: 727–734; 1976.

    Article  PubMed  CAS  Google Scholar 

  9. Gospodarowitcz, D. Purification of a fibroblast growth factor from bovine pituitary. J. Biol. Chem. 250: 2515–2520; 1975.

    Google Scholar 

  10. Culp, L. A. Substrate-attached glycoproteins mediating adhesion of normal and virustransformed mouse fibroblasts. J. Cell Biol. 63: 71–83; 1974.

    Article  PubMed  CAS  Google Scholar 

  11. Freeman, A. E.; Igel, H. J.; Herrman, B. J.; Kleinfeld, K. L. Growth and characterization of human skin epithelial cell cultures. In Vitro 12: 352–362; 1976.

    PubMed  CAS  Google Scholar 

  12. Liu, S-C.; Karasek, M. Isolation and growth of adult human epidermal keratinocytes in cell culture. J. Invest. Dermatol. 71: 157–162; 1978.

    Article  PubMed  CAS  Google Scholar 

  13. Waymouth, C. Studies on chemically defined media and the nutritional requirements of cultures of epithelial cells. Katsuta, H. ed. Nutrition requirements of cultured cells. Tokyo: Japan Scientific Societies Press; 1978: 39–61.

    Google Scholar 

  14. Namba, M.; Hyodo, F.; Kimoto, T. Establishment of a fibroblastic cell line and an epithelial cell line from livers of Chinese hamsters: Effects of dexamethasone on survival and proliferation of cells. Katsuta, H. ed. Nutritional requirements of cultured cells. Tokyo: Japan Scientific Societies Press; 1978: 277–291.

    Google Scholar 

  15. Viaje, A.; Slaga, T. J.; Wigler, M.; Weinstein, I. B. Effects of antiinflammatory agents on mouse skin tumor promotion, epidermal DNA synthesis, phorbol ester-induced cellular proliferation, and production of plasminogen activator. Cancer Res. 37: 1530–1536; 1977.

    PubMed  CAS  Google Scholar 

  16. Rifkin, D. B. Plasminogen activator synthesis by cultured human embryonic lung cells: characterization of the suppressive effect of corticosteroids. J. Cell Physiol. 97: 421–427; 1978.

    Article  PubMed  CAS  Google Scholar 

  17. Green, H. Terminal differentiation of cultured human epidermal cells. Cell 11: 405–416; 1977.

    Article  PubMed  CAS  Google Scholar 

  18. Williams, G. M.; Bermudez, E.; San, R. H. C.; Goldblatt, P. J.; Laspia, M. F. Rat hepatocyte primary cultures. IV. Maintenance in defined medium and the role of production of plasminogen activator and other proteases. In Vitro 14: 824–837; 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Foster, S. J.; Perkins, J. P. Glucocorticoids increase the responsiveness of cells in culture to prostaglandin E. Proc. Natl. Acad. Sci. U.S.A. 74: 4816–4820; 1977.

    Article  PubMed  CAS  Google Scholar 

  20. Baker, J. B.; Barsh, G. S.; Carney, D. H.; Cunningham, D. D.: Dexamethasone modulates binding and action of epidermal growth factor in serum-free cell culture. Proc. Natl. Acad. Sci. U.S.A. 75: 1882–1886; 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Cristofalo, V. J.; Kabakjian, J. Lysosomal enzymes and agingin vitro: Subcellular enzyme distribution and effect of hydrocortisone on cell life span. Mech. Ageing Dev. 4: 19–28; 1975.

    Article  PubMed  CAS  Google Scholar 

  22. Ballard, P. L.; Tomkins, G. M. Hormone induced modification of the cell surface. Nature 224: 344–345; 1969.

    Article  PubMed  CAS  Google Scholar 

  23. Kletzien, R. F.; Pariza, M. W.; Becker, J. E.; Potter, V. R. A “permissive” effect of dexamethasone on the glucagon induction of amino acid transport in culture hepatocytes. Nature 256: 46–47; 1975.

    Article  PubMed  CAS  Google Scholar 

  24. Peehl, D. M.; Ham, R. G. Clonal growth of human keratinocytes with small amounts of dialyzed serum. In Vitro 16: 526–540; 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Taylor-Papadimitriou, J.; Shearer, M.; Stoker, M. G. P. Growth requirements of human mammary epithelial cells in culture. Int. J. Cancer 20: 903–908; 1977.

    Article  PubMed  CAS  Google Scholar 

  26. Green, H. Cyclic AMP in relation to proliferation of the epidermal cell: A new view. Cell 15: 801–811; 1978.

    Article  PubMed  CAS  Google Scholar 

  27. Pious, D. A.; Hamburger, R. N.; Mills, S. E. Clonal growth of primary human cell cultures. Exp. Cell Res. 33: 495–507; 1964.

    Article  PubMed  CAS  Google Scholar 

  28. Yuspa, S. H.; Harris, C. C. Altered differentiation of mouse epidermal cells treated with retinyl acetatein vitro. Exp. Cell Res. 86: 95–105; 1974.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper contains material from a thesis submitted to the Graduate School of the University of Colorado, Boulder, by Donna M. Peehl in partial fulfillment of the requirements for the Ph.D. degree.

This work was supported by Grant CA 15305 from the National Cancer Institute and Grant AG 00310 from the National Institute on Aging.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peehl, D.M., Ham, R.G. Growth and differentiation of human keratinocytes without a feeder layer or conditioned medium. In Vitro 16, 516–525 (1980). https://doi.org/10.1007/BF02626465

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02626465

Key words

Navigation