Log in

Suppression of cell wall stiffening along coleoptiles of wheat (Triticum aestivum L.) seedlings grown under osmotic stress conditions

  • Original Articles
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Effects of polyethylene glycol (PEG)-induced osmotic stress on the mechanical properties of cell walls and the levels of their components were investigated along intact wheat (Triticum aestivum L.) coleoptiles. Stress-relaxation analysis showed that the cell walls of stressed coleoptiles were loosened as compared with those of unstressed ones not only in the apical but in the basal regions. The amounts of wall-bound ferulic acid (FA) and diferulic acid (DFA) of stressed coleoptiles were substantially lower than those of unstressed ones in all regions. The cellulose and hemicellulose contents increased toward the coleoptile base. Osmotic stress reduced the cellulose content in the basal region but it slightly affected the hemicellulose content. The molecular weight of hemicellulose in the apical region of stressed coleoptiles was higher than that of unstressed ones, while that in the basal region was almost the same in both coleoptiles. FA, DFA and cellulose contents correlated with the cell wall mechanical property. The amount and molecular weight of hemicellulose, however, did not correlate. These results suggest that the reduced levels of FA and DFA in all regions and cellulose in the basal region of wheat coleoptiles are involved in maintaining the cell wall extensibility under osmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DFA:

diferulic acid

FA:

ferulic acid

PEG:

polyethylene glycol

To:

minimum stress-relaxation time

References

  • Acevedo, D., Hsiao, T.C. andhenderson, D.W. 1971. Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol.48: 631–636.

    PubMed  Google Scholar 

  • Albersheim, P., Nevins, D.J., English, P.D. andKarr, A. 1967. A method for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography. Carbohydr. Res.5: 340–345.

    Article  CAS  Google Scholar 

  • Darvill, A., McNeil, N., Albersheim, P. andDelmer, P.D. 1980. The primary cell walls of flowering plant.In E.N. Tolbert, ed., The Biochemistry of Plants Vol. 1, Academic Press, New York, pp. 91–192.

    Google Scholar 

  • Doi, M. andEdwards, S.F. 1978. Dynamics of concentrated polymer systems part I. Brownian motion in the equilibrium state. J. Chem. Society London Faraday Transactions II.74: 1789–1801.

    Article  CAS  Google Scholar 

  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. andSmith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem.28: 350–356.

    Article  CAS  Google Scholar 

  • Fry, S.C. 1979. Phenolic components of the primary cell wall and their possible role in the hormonal regulation of growth. Planta146: 343–351.

    Article  CAS  Google Scholar 

  • Fry, S.C. 1984. Incorporation of [14C]cinnamate into hydrolase-resistant components of the primary cell wall of spinach. Phytochemistry23: 59–64.

    Article  CAS  Google Scholar 

  • Fry, S.C. 1986. Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu. Rev. Plant Physiol.37: 165–186.

    Article  CAS  Google Scholar 

  • Fujihara, S., Yamamoto, R. andMasuda, Y. 1978. Viscoelastic properties of plant cell walls I. Mathematical formulation for stress relaxation with consideration for the pre-extension rate. Biorheology15: 63–75.

    PubMed  CAS  Google Scholar 

  • Harris, P.J. andHartley, R.D. 1976. Detection of bound ferulic acid in the cell walls of the gramineae by ultraviolet fluorescence microscopy. Nature259: 508–510.

    Article  CAS  Google Scholar 

  • Hoson, T. andMasuda, Y. 1991. Inhibition of auxin-induced elongation and xyloglucan breakdown in azuki bean epicotyl segments by fucose-binding lectins. Physiol. Plant.82: 41–47.

    Article  CAS  Google Scholar 

  • Iraki, N.M., Bressan, R.A., Hasegawa, P.M. andCarpita, N.C. 1989. Alteration of the physical and chemical structure of the primary cell wall of growth-limited plant cells adapted to osmotic stress. Plant Physiol.91: 39–47.

    PubMed  CAS  Google Scholar 

  • Ishii, T. 1991. Isolation and characterization of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cell-walls. Carbohydr. Res.219: 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Kamisaka, S., Takeda, S., Takahashi, K. andShibata, K. 1990. Diferulic and ferulic acid in the cell wall ofAvena coleoptiles-Their relationships to mechanical properties of the cell wall. Physiol. Plant.78: 1–7.

    Article  CAS  Google Scholar 

  • Kato, Y. andNevins, D.J. 1985. Isolation and identification of O-(5-O-feruloyl-L-arabinofuranosyl)-(1–3)-O-B-D-xylopyranosyl-(1–4)-D-xylopyranose as a component of Zea shoot cell walls. Carbohydr. Res.137: 139–150.

    Article  CAS  Google Scholar 

  • Kutschera, U. 1989. Growth,in-vivo extensibility and tissue tension in mung bean seedlings subjected to water stress. Plant Sci.61: 1–7.

    Article  Google Scholar 

  • Masuda, Y. andYamamoto, R. 1985. Cell-wall changes during auxin-induced cell extension. Mechanical properties and constituent polysaccharides of the cell walls.In C.T. Brett and J.R. Hillman, eds., Biochemistry of Plant Cell Walls, Cambridge University Press, Cambridge, pp. 267–300.

    Google Scholar 

  • Miyamoto, K., Ueda, J., Hoson, T., Kamisaka, S. andMasuda, Y. 1992. Effect of white light on pea epicotyl growth and cell wall properties of the epidermis and inner tissues.In Y. Masuda, ed., Plant Cell Walls as Biopolymers with Physiological Functions, Yamada Science Foundation, Osaka, pp. 205–210.

    Google Scholar 

  • Miyamoto, K., Ueda, J., Takeda, S., Ida, K., Hoson, T., Masuda, Y. andKamisaka, S. 1994. Light-induced increase in the contents of ferulic and diferulic acids in cell walls ofAvena coleoptiles: its relationship to growth inhibition by light. Physiol. Plant.92: 350–355.

    Article  CAS  Google Scholar 

  • Muñoz, F.J., Labrador, E. andDopico, B. 1993. Effect of osmotic stress on the growth of epicotyls ofCicer arietinum in relation to changes in the autolytic process and glycanhydrolytic cell wall enzymes. Physiol. Plant.87: 544–551.

    Article  Google Scholar 

  • Nishitani, K. andMasuda, Y. 1981. Auxin-induced changes in the cell wall structure: Changes in the sugar compositions, intrinsic viscosity and molecular weight distributions of matrix polysaccharides of the epicotyl cell wall ofVigna angularis. Physiol. Plant.52: 482–494.

    Article  CAS  Google Scholar 

  • Nishitani, K. andNevins, D.J. 1988. Enzymic analysis of feruloylated arabinoxylans (feraxan) derived fromZea mays cell walls. I. Purification of novel enzymes capable of dissociating feraxan fragments fromZea mays coleoptile cell wall. Plant Physiol.87: 883–890.

    PubMed  CAS  Google Scholar 

  • Revilla, G., Zarra, I. andMasuda Y. 1988. Molecular weight distribution of hemicellulosic polysaccharides of the cell wall of tall and dwarf rice cultivars, and the effect of GA3. Physiol. Plant.72: 782–789.

    Article  CAS  Google Scholar 

  • Richtzenhain, H. 1949. Enzymatische Versuche zur Entstehung der Lignins. IV. Mitteil: Dehydrierungen in der Guajacolreihe. Chemische Berichte82: 447–453.

    CAS  Google Scholar 

  • Sakurai, N. 1991. Cell wall functions in growth and development. A physical and chemical point of view. Bot. Mag. Tokyo104: 235–251.

    Article  Google Scholar 

  • Sakurai, N. andKuraishi, S. 1984. Sugar compositions, intrinsic viscosities and molecular weights of hemicellulosic polysaccharides of coleoptile cell walls in a semi-brachytic and a normal type barley. Plant Cell Physiol.25: 955–963.

    CAS  Google Scholar 

  • Sakurai, N., Nishitani, K. andMasuda, Y. 1979. Auxininduced changes in molecular weight of hemicellulosic polysaccharides ofAvena coleoptile cell wall. Plant Cell Physiol.20: 593–603.

    CAS  Google Scholar 

  • Sakurai, N., Tanaka, S. andKuraishi, S. 1987. Changes in wall polysaccharides of squash (Cucurbita maxima Duch.) hypocotyls under water stress condition II. Composition of pectic and hemicellulosic polysaccharides. Plant Cell Physiol.28: 1059–1070.

    CAS  Google Scholar 

  • Shibuya, N. 1984. Phenolic acids and their carbohydrate esters in rice endosperm cell walls. Phytochemistry23: 2233–2237.

    Article  CAS  Google Scholar 

  • Sweet, W.J., Morrison, J.C., Labavitch, J.M. andMatthews, M.A. 1990. Altered synthesis and composition of cell wall of grape (Vitis vinifera L.) leaves during expansion and growth-inhibiting water deficits. Plant Cell Physiol.31: 407–414.

    CAS  Google Scholar 

  • Taiz, L. 1984. Plant cell expansion: regulation of cell wall mechanical properties. Annu. Rev. Plant Physiol.35: 585–657.

    Article  CAS  Google Scholar 

  • Tan, K.S., Hoson, T., Masuda, Y. andKamisaka, S. 1991. Correlation between cell wall extensibility and the content of diferulic and ferulic acids in cell walls ofOryza sativa coleoptiles grown under water and in air. Physiol. Plant.83: 397–403.

    Article  CAS  Google Scholar 

  • Tan, K.S., Hoson, T., Masuda, Y. andKamisaka, S. 1992a. Involvement of cell wall-bound diferulic acid in lightinduced decrease in growth rate and cell wall extensibility ofOryza coleoptiles. Plant Cell Physiol.33: 103–108.

    CAS  Google Scholar 

  • Tan, K.S., Hoson, T., Masuda, Y. andKamisaka, S. 1992b. Effect of ferulic andp-coumaric acids onOryza coleoptile growth and the mechanical properties of cell walls. J. Plant Physiol.140: 460–465.

    CAS  Google Scholar 

  • Valero, P. andLabrador, E. 1996. Effect of water stress on the LiCl extracted cell wall proteins and glycanhydrolytic enzymes during growth ofCicer arietinum epicotyls. Plant Physiol. Biochem.34: 307–313.

    CAS  Google Scholar 

  • Wakabayashi, K., Hoson, T. andKamisaka, S. 1997a. Osmotic stress suppresses cell wall stiffening and the increase in cell wall-bound ferulic and diferulic acids in wheat coleoptiles. Plant Physiol.113: 967–973.

    PubMed  CAS  Google Scholar 

  • Wakabayashi, K., Hoson, T. andKamisaka, S. 1997b. Osmotic stress-induced growth suppression of darkgrown wheat (Triticum aestivum L.) coleoptiles. Plant Cell Physiol.38: 297–303.

    CAS  Google Scholar 

  • Wakabayashi, K., Sakurai, N. andKuraishi, S. 1991. Differential effect of auxin on molecular weight distribution of xyloglucans in cell walls of outer and inner tissues from segments of dark grown squash (Cucurbita maxima Duch.) hypocotyls. Plant Physiol.95: 1070–1076.

    PubMed  CAS  Google Scholar 

  • Yamamoto, E., Bokelman, G.H. andLewis, N.G. 1989. Phenylpropanoid metabolism in cell walls.In N.G. Lewis and M.G. Paice, eds., Plant Cell Wall Polymers: Biogenesis and Biodegradation, ACS Symposium Series 339, American Chemical Society, Washington, DC, pp. 68–88.

    Google Scholar 

  • Yamamoto, R., Shinozaki, K. andMasuda, Y. 1970. Stress-relaxation properties of plant cell walls with special reference to auxin action. Plant Cell Physiol.11: 947–956.

    CAS  Google Scholar 

  • Zhong, H. andLäuchli, A. 1988. Incorporation of [14C] glucose into cell wall polysaccharides of cotton roots: Effect of NaCl and CaCl2. Plant Physiol.88: 511–514.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakabayashi, K., Hoson, T. & Kamisaka, S. Suppression of cell wall stiffening along coleoptiles of wheat (Triticum aestivum L.) seedlings grown under osmotic stress conditions. J. Plant Res. 110, 311–316 (1997). https://doi.org/10.1007/BF02524928

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02524928

Key words

Navigation