Log in

Diffusion in partially-saturated porous materials

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The diffusive transport of ions in two classes of porous media was studied as a function of fluid saturation and wetting properties. A lattice Boltzmann method was used to model phase separation of a binary mixture, including wetting effects, in porous media. Diffusive transport is then evaluated in each separate phase.

It is found that the degree of saturation of each phase can strongly affect the transport of ions that are limited to diffusing in either the wetting or non-wetting phase. At high saturations, good agreement is found between our estimates of diffusivity and that predicted by the semi-empirical Archie's second law. At lower saturations it is found that Archie's second law breaks down as percolation effects become important.

Résumé

Le transport d'ions par diffusion dans deux milieux poreux différents est étudié en fonction de leurs saturation en fluide et mouillabilité. Un maillage selon la méthode de Boltzmann est utilisé pour modéliser la séparation de phase du mélange binaire constituant le milieu poreux. Le modèle prend en compte les effets de mouillabilité. Le transport par diffusion est ensuite évalué dans chaque phase.

Il est observé que le degré de saturation de chaque phase peut grandement affecter le transport des ions pour lesquels la diffusion est limitée à la phase mouillable ou à la phase non mouillable. Aux fortes saturations, nos estimations concernant la diffusivité sont en accord avec celles prévues par la seconde loi d'Archie laquelle est semi-empirique. Aux faibles saturations, la seconde loi d'Archie n'est plus valable lorsque les effets de percolation deviennent importants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dullien, F. A. L., ‘Porous Media: Fluid Transport and Pore Structure’, (Academic Press, San Diego, CA, 1992).

    Google Scholar 

  2. Martys, N. S. and Chen, H., ‘Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method,Phys. Rev. E 53 (1) (1996) 743–750.

    Article  Google Scholar 

  3. Schwartz, L. M., Martys, N., Bentz, D. P., Garboczi, E. J. and Torquato, S., ‘Cross-property relations and permeability estimation in model porous media’,48 (6) (1993) 4584–4591.

    Article  Google Scholar 

  4. Rothman D. H. and Zaleski, S., ‘Lattice-gas model of phase separation: interfaces, phase transitions, and multiphase flow’,Rev. Mod. Phys. 66 (4) (1994) 1417–1479.

    Article  Google Scholar 

  5. Qian, Y. H., d'Humières, D. and Lallemand, P., ‘Lattice BGK models for Navier-Stokes equation’,Europhys. Lett. 17 (1992) 479–484.

    MATH  Google Scholar 

  6. Chen, H., Chen, S. Y. and Matthaeus, W. H., ‘Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method’,Phys. Rev. A 45 (1992), R5339-R5342.

    Article  Google Scholar 

  7. Vicsek, T., ‘Fractal Growth Phenomena’ (Worlds Scientific, Singapore, 1989).

    MATH  Google Scholar 

  8. Archie, G. E., ‘The electrical resistivity log as an aid in determining some reservoir characteristics’,Trans. AIME 146 (1942) 54–62.

    Google Scholar 

  9. Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vettering, W. T., ‘Numerical Recipes: The Art of Scientific Programing’, (Cambridge University Press, New York, 1988).

    Google Scholar 

  10. Feng, S., Halperin, H. I. and Sen, P. N., ‘Transport properties of continuum systems near the percolation threshold’,Phys. Rev. B 35 (1987) 197–214.

    Article  Google Scholar 

  11. Roberts, J. N. and Schwartz, L. W., ‘Grain consolidation and electrical conductivity in porous media’,31 (9) (1985) 5990–5997.

    Article  Google Scholar 

  12. Shan X., and Chen, H., ‘Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation’,Phys. Rev. E 49 (4) (1994) 2941–2948.

    Article  Google Scholar 

  13. Auzerais, F. M. Dunsmuir, J., Ferrjol, B. B., Martys, N., Olson, J., Ramakrishnan, T. S., Rothman, D. H. and Schwartz, L. M., ‘Transport in sandstone: A study based on three dimensional microtomography’,Geophysical Review Letters 23 (7) (1996) 705–708.

    Article  Google Scholar 

  14. Bentz, D. P., Garboczi, E. J. and Martys, N. S., ‘Application of Digital-Image-Based Models to Microstructure, Transport Properties, and Degradation of Cement-Based Materials, in ‘The Modelling of Microstructure and Its Potential for Studying Transport Properties and Durability’, (Kluwer Academic Publishers, Netherlands, 1996) 167–185.

    Google Scholar 

  15. Bender, C. M. and Orszag, S. A., ‘Advanced Mathematical Methods for Scientists and Engineers’, (McGraw-Hill, New York, 1978).

    MATH  Google Scholar 

  16. Halamickova, P., Detwiler, R. J., Bentz, D. P. and Garboczi, E. J., ‘Water permeability and chloride ion diffusion in Portland cement mortars: Relationship to sand content and critical pore diameter’,Cement and Concrete Research 25 (4) (1995) 790–802.

    Article  Google Scholar 

  17. Martys, N., Robbins, M. O. and Cieplak, M., ‘Scaling relations for interface motion through disordered media: Application to two-dimensional fluid invasion’,Phys. Rev. B 44 (22) (1991) 12294–12306.

    Article  Google Scholar 

  18. Jeffery, D. J., ‘Conduction through a random suspension of spheres’, Proc. Roy. Soc. London A, 335 (1973) 355–367.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martys, N.S. Diffusion in partially-saturated porous materials. Mat. Struct. 32, 555–562 (1999). https://doi.org/10.1007/BF02480489

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480489

Keywords

Navigation