Log in

Effect of motor-unit firing time statistics on e.m.g. spectra

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The generation of an e.m.g. can be modelled by linear filtering of N impulse trains, regarded as the neural inputs to N motor units, where the e.m.g. is the sum of the outputs of the N filters. Starting from this model, it is shown that not only are the shapes of the N action potential images as viewed by the electrodes an important factor in defining the spectrum, but so is the interspike interval distribution of the impulse trains. Changes in the statistics of the pulse trains are shown to affect the low-frequency end of the power spectrum even if the motor-unit action potentials do not change shape. The effect is illustrated by use of data already published on deltoid muscle and brachii biceps. A means of including motor-unit synchronisation is introduced and it is shown that its effect can be contrary to that due to the firing statistics.

Sommaire

La génération d'un électromyogramme peut être mise en modèle par le filtrage linéaire des trains d'impulsionsN, considérés en tant qu'entrées neurales des unités motricesN, ou l'e.m.g. représente la somme des sorties des filtresN. En prenant ce modèle comme point de départ, on peut constater que non seulement les configurations des images potentielles de l'actionN, vues par les électrodes, représentent un facteur important pour l'établissement de la définition du spectre d'électromyogramme, mais que la distribution des intervalles entre-crête des trains d'impulsions le sont également. Similairement, on peut constater que les modifications d'ordre statistique des trains d'impulsions affectent l'extrémité de basse-fréquence du spectre de puissance, même si les potentiels actifs de l'unité motrice ne changent pas de configuration. Cet effet est illustré par l'utilisation de donées déjà publiées qui se rapportent aux aspects des muscles deltoides et des bicep brachiaux. Une méthode est également présentee, qui consiste à incorporer la synchronisation de l'unité motrice et, à cet égard, on constate que l'effet de cette dernière peut être possiblement à l'inverse de celle qui est engendrée par les statistiques des temps d'allumage.

Zusammenfassung

Die Erzeugung eines EMG kann durch lineares Filtern einerN-Impulsserie im Modell dargestellt werden, die als neurale Eingaben fürN-motorische Einheiten angesehen werden, wobei das EMG die Summe der Ausgaben von denN-Filtern ist. Ausgehend von diesem Modell wird gezeigt, daß die Formen der durchN-Wirkung hervorgerufenen Potentialbilder, die von den Elektroden abgelesen werden, nicht nur einen bedeutenden Faktor in der Begrenzung des Spektrums darstellen, sondern daß dies auch für die Intervall- verteilung der Impulsserien zwischen den Spitzen zutrifft. Änderungen inder Statistik der Impulsserien wirken sich erwiesenermaßen auf die Nieder-frequenzseite des Kraftspektrums aus, selbst wenn die Aktionspotentiale der motorischen Einheiten ihre Form nicht ändern. Die Wirkung wird durch Einsatz von bereits veröffentlichten Daten über den Deltamuskel und die Brachialmuskeln dargestellt. Ein Mittel zum Einschluß der Synchronisation von motorischen Einheiten wird vorgestellt, und eswird gezeigt, daß seine Wirkung entegengesetzt zur Auslösungsstatistik liegen kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birö, G. andPartridge, L. D. (1971) Analysis of multiunit spike records.J. Appl. Physiol. 30, 521–526.

    Google Scholar 

  • Brody, G., Scott, R. N. andBalasubramanian, R. (1974) A model for myoelectric signal generation.Med. & Biol. Eng. 12, 29–41.

    Google Scholar 

  • Clamann, H. P. (1969) Statistical analysis of motor unit firing patterns in human skeletal muscle.Biophys. J. 9, 1233–1251.

    Google Scholar 

  • Coggshall, J. C. (1973) Linear models for biological transducers and impulse train spectra: General formulation and review.Kybernetik 13, 30–37.

    Article  Google Scholar 

  • Cox, D. R. (1962)Renewal theory. Methuen, London.

    MATH  Google Scholar 

  • Cox, D. R. andSmith, W. L. (1954) On the superposition of renewal processes.Biometrika 41, 91–99.

    Article  MATH  MathSciNet  Google Scholar 

  • De Luca, C. J. andForrest, W. J. (1973) Some properties of motor unit action potential trains recorded during constant force isometric contraction in man.Kybernetik 12, 160–168.

    Article  Google Scholar 

  • De Luca, C. J. andVandyk, E. J. (1975) Derivation of some parameters of myoelectric signals recorded during sustained constant force isometric contractions.Biophys. J. 15, 1167–1180.

    Article  Google Scholar 

  • Fay, D. F., Jones, N. B. andPorter, N. (1976) Spectral analysis of the myoelectric activity of the pelvic floor during voluntary contractions.Electromyography & Clin. Neurophysiol. 16, 525–551.

    Google Scholar 

  • Gestri, G. (1972) Autocorrelation and spectrum of the modulated retinal discharge. A comparison of theoretical and experimental results.Kybernetik 11, 77–85.

    Google Scholar 

  • Johansson, S., Larsson, L. E. andOrtengren, R. (1970) An automated method for the frequency analysis of myoelectric signals evaluated by an investigation of the spectral changes following strong sustained contractions.Med. & Biol. Eng. 8, 257–264.

    Google Scholar 

  • Kadefors, E. K., Kaiser, E. andPetersen, I. (1968) Dynamic spectrum analysis of myoelectric potentials with special reference to muscle fatigue.Electromyography 8, 39–74.

    Google Scholar 

  • Khintchine, A. Y. (1960)Mathematical methods in the theory of queueing. Charles Griffin, London.

    MATH  Google Scholar 

  • Larsson, L. E. (1969) Frequency analysis of the EMG as used in practical clinical work.Electroenceph. & Clin. Neurophysiol. 26, 338–343.

    Article  Google Scholar 

  • Libkind, M. S. (1968) II Modelling of interference bioelectrical activity.Biophys. 13, 811–821.

    Google Scholar 

  • Libkind, M. S. (1969) III Modelling of interference bioelectrical activity.14, 395–398.

    Google Scholar 

  • Lindstrom, L., Magnusson, R. andPetersen, I. (1970) Muscular fatigue and action potential conduction velocity changes studies with frequency analysis of EMG signals.Electromyography 10, 341–356.

    Google Scholar 

  • O'Donnell, R. D., Rapp, J., Berkhout, J. andAdey, W. R. (1973) Autospectral and coherence patterns from two locations in the contracting biceps.Electromyography Clin. Neurophysiol. 13, 259–269.

    Google Scholar 

  • Person, R. S. andMishin, L. N. (1964) Auto and cross-correlation analysis of the electrical activity of muscles.Med. & Biol. Eng. 2, 155–159.

    Google Scholar 

  • Shiavi, R. andNegin, M. (1975) Multivariate analysis of simultaneously active motor units in human skeletal muscle.Biol. Cybernetics 29, 9–16.

    Article  Google Scholar 

  • Shiavi, R. andNegin, M. (1975a) Stochastic properties of motor-neuron activity and the effect of muscular length.19, 231–237.

    Article  Google Scholar 

  • Zadeh, L. A. (1957) Signals flow graphs and random signals.Proc. IRE 45, 1413–1414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lago, P., Jones, N.B. Effect of motor-unit firing time statistics on e.m.g. spectra. Med. Biol. Eng. Comput. 15, 648–655 (1977). https://doi.org/10.1007/BF02457923

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02457923

Keywords

Navigation