Log in

Physiology in fractal dimensions: Error tolerance

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The natural variability in physiological form and function is herein related to the geometric concept of a fractal. The average dimensions of the branches in the tracheobronchial tree, long thought to be exponential, are shown to be an inverse power law of the generation number modulated by a harmonic variation. A similar functional form is found for the power spectrum of the QRS-complex of the healthy human heart. These results follow from the assumption that the bronchial tree and the cardiac conduction system are fractal forms. The fractal concept provides a mechanism for the morphogenesis of complex structures which are more stable than those generated by classical scaling (i.e., they are more error tolerant).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berry, M.V.; Lewis, A.V. On the Weierstrass-Mandelbrot fractal function. Proc. Roy. Soc. Lond. 370A:459–484; 1980.

    Google Scholar 

  2. Goldberger, A.L.; West, B.J. Fractals in physiology and medicine. Yale J. Biol. Med. 60:421–435; 1987.

    CAS  PubMed  Google Scholar 

  3. Goldberger, A.L.; Bhargava, V.; West, B.J.; Mandell, A.J. On a mechanism of cardiac electrical stability; the fractal hypothesis. Biophys. J. 48:525–528; 1985.

    CAS  PubMed  Google Scholar 

  4. Hughes, E.D., Montroll, E.W.; Shlesinger, M.F. J. Stat. Phys. 28:111; 1982.

    Article  Google Scholar 

  5. Koslow, S.H.; Mandell, A.J.; Shlesinger, M.F., eds. Perspectives in biological dynamics and theoretical medicine. New York: New York Acad. Sci.; 1987.

    Google Scholar 

  6. Mandelbrot, B.B. Fractals, form and chance. W.H. Freeman; 1977; The fractal geometry of nature. W.H. Freeman; 1982.

  7. Montroll, E.W. and Shlesinger, M.F., Proc. Natl. Acad. Sci. 79:337; 1982.

    Google Scholar 

  8. Raabe, O.G.; Yeh, M.C.; Schum, G.M.; Phalen, R.F. Tracheobronchial geometry; human, dog, rat, hamster. Albuquerque, NM: Lovelace Foundation for Medical Education and Research; 1976.

    Google Scholar 

  9. Thompson, D.W. On growth and forum, 2nd Ed., Cambridge, England: Cambridge University Press; 1963; original 1917.

    Google Scholar 

  10. Weibel, E.R.; Gomez, D.M. The architecture of the human lung, Sci. 137:577; 1962.

    CAS  Google Scholar 

  11. West, B.J. In: Kelso, J.A.S.; Mandell, A.J.; Shlesinger, M.F., eds. Dynamic patterns in complex systems. Singapore: World Science; 1988.

    Google Scholar 

  12. West, B.J.; Bhargava V., Goldberger, A.L. Beyond the principle of similitude: Renormalizaton in the bronchial tree. J. Appl. Physiol. 60:188–197; 1986.

    Google Scholar 

  13. West, B.J.; Goldberger, A.L. Physiology in fractal dimensions. Am. Sci. 75:354–365; 1987.

    Google Scholar 

  14. West, B.J.; Goldberger, A.L.; Rovner, G.; Bhargava, V. Nonlinear dynamics of the heartbeat I. The AV junction: Passive conduit or active oscillator? Physica 17D:198–206; 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, B.J. Physiology in fractal dimensions: Error tolerance. Ann Biomed Eng 18, 135–149 (1990). https://doi.org/10.1007/BF02368426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368426

Keywords

Navigation