Log in

Relationships among several methods of linearly constrained correspondence analysis

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

This paper shows essential equivalences among several methods of linearly constrained correspondence analysis. They include Fisher's method of additive scoring, Hayashi's second type of quantification method, ter Braak's canonical correspondence analysis, Nishisato's type of quantification method, ter Braak's canonical correspondence analysis, Nishisato's ANOVA of categorical data, correspondence analysis of manipulated contingency tables, Böckenholt and Böckenholt's least squares canonical analysis with linear constraints, and van der Heijden and Meijerink's zero average restrictions. These methods fall into one of two classes of methods corresponding to two alternative ways of imposing linear constraints, the reparametrization method and the null space method. A connection between the two is established through Khatri's lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Böckenholt, U., & Böckenholt, I. (1990). Canonical analysis of contingency tables with linear constraints.Psychometrika, 55, 633–639.

    Google Scholar 

  • Carroll, J. D. (1973). Models and algorithms for multidimensional scaling, conjoint measurement and related techniques. In P. E. Green & Y. Wind (Eds.),Multiattribute decisions in marketing: A measurement approach (pp. 299–387). New York: Dryden Press.

    Google Scholar 

  • Carroll, J. D., Pruzansky, S., & Kruskal, J. B. (1980). CANDELINC: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters.Psychometrika, 45, 3–24.

    Google Scholar 

  • Cazes, P., Chessel, D., & Doledec, S. (1988). L'analyse des correspondances internes d'un tableau partitionné: Son usage en hydrobiologie [Internal correspondence analysis of a partitioned table: Its use in hydrobiology].Revue des Statistique Appliquée, 36, 39–54.

    Google Scholar 

  • Chessel, D., Lebreton, J. D., & Yoccoz, N. (1987). Propriétés de l'analyse canonique des correspondances: Une illustration en hydrobiologie [Properties of canonical correspondence analysis: An illustration in hydrobiology.]Revue des Statistique Appliquée, 35, 55–72.

    Google Scholar 

  • D'Ambra, L., & Lauro, N. (1989). Nonsymmetrical analysis of three-way contingency tables. In R. Coppi & S. Bolasco (Eds.),Multiway data analysis (pp. 301–315). Amsterdam: Elsevier.

    Google Scholar 

  • de Leeuw, J. (1984). Fixed rank matrix approximation with singular weights matrices.Computational Statistics Quarterly, 1, 3–12.

    Google Scholar 

  • DeSarbo, W. S., Carroll, J. D., Lehmann, D. R., & O'Shaughnessy, J. (1982). Three-way multivariate conjoint analysis.Marketing Science, 1, 323–350.

    Google Scholar 

  • DeSarbo, W. S., & Rao, V. R. (1984). GENFOLD2: A set of models and algorithms for the GENeral UnFOLDing analysis of preference/dominance data.Journal of Classification, 1, 147–186.

    Google Scholar 

  • Fisher, R. A. (1936). The use of multiple measurement in taxonomic problems.Annals of Eugenics, 7, 179–188.

    Google Scholar 

  • Fisher, R. A. (1948).Statistical methods for research workers (10th ed., Enlarged edition). London: Oliver and Boyd.

    Google Scholar 

  • Gilula, Z., & Haberman, S. J. (1988). The analysis of contingency tables by restricted canonical and restricted association models.Journal of the American Statistical Association, 83, 760–771.

    Google Scholar 

  • Greenacre, M. J. (1984).Theory and applications of correspondence analysis. London: Academic Press.

    Google Scholar 

  • Hayashi, C. (1950). On the quantification of qualitative data from the mathematico-statistical point of view.Annals of the Institute of Statistical Mathematics, 2, 35–47.

    Google Scholar 

  • Hayashi, C. (1952). On the prediction of phenomena from qualitative data and the quantification of qualitative data from the mathematico-statistical point of view.Annals of the Institute of Statistical Mathematics, 3, 69–98.

    Google Scholar 

  • Heiser, W. J. (1981).Unfolding analysis of proximity data. Leiden, The Netherlands: DSWO Press.

    Google Scholar 

  • Heiser, W. J. (1987). Joint ordination of species and sites: The unfolding technique. In P. Legendre & L. Legendre (Eds.),Developments in numerical ecology (pp. 189–221). Berlin: Springer.

    Google Scholar 

  • Israëls, A. (1987).Eigenvalue techniques for qualitative data. Leiden, The Netherlands: DSWO Press.

    Google Scholar 

  • Johnson, P. O. (1950). The quantification of qualitative data in discriminant analysis.Journal of the American Statistical Association, 45, 65–76.

    Google Scholar 

  • Khatri, C. G. (1966). A note on a MANOVA model applied to problems in growth curves.Annals of the Institute of Statistical Mathematics, 18, 75–86.

    Google Scholar 

  • Khatri, C. G. (1988).Some properties of BLUE in a linear model and canonical correlations associated with linear transformations (Technical Report 88-20) Pittsburgh: University of Pittsburgh, Center for Multivariate Analysis.

    Google Scholar 

  • Lebreton, J. D., Chessel, D., Prodon, R., & Yoccoz, N. (1988). L'analyse des relations espèces-milieu par l'analyse canonique des correspondences, I. Variables de milieu quantitatives. [Analysis of speciesenvironment relations by canonical correspondence analysis, I. Quantitative environment variables.]Acta Oecologica, 9, 53–67.

    Google Scholar 

  • Leclerc, A. (1975). L'analyse des correspondence sur juxtaposition de tableaux de contingence [Correspondence analysis of juxtaposed contingency tables].Revue de Statistique Appliquée, 23, 5–16.

    Google Scholar 

  • Maxwell, A. E. (1961). Canonical variate analysis when the variables are dichotomous.Educational and Psychological Measurement, 21, 259–271.

    Google Scholar 

  • Nishisato, S. (1971). Analysis of variance through optimal scaling. In C. S. Carter, D. W. Dwivedi, I. P. Felligi, D. A. S. Fraser, J. R. McGregor, & D. A. Sprott (Eds.),Statistics '71 Canada, Proceedings of the first Canadian conference in applied statistics (pp. 306–316). Montreal: Sir George Williams University Press.

    Google Scholar 

  • Nishisato, S. (1972).Analysis of variance of categorical data through selective scaling. Abstract Guide, 20th International Congress of Psychology, Tokyo, p. 279.

  • Nishisato, S. (1980).Analysis of categorical data: Dual scaling and its applications. Toronto: University of Toronto Press.

    Google Scholar 

  • Ramsay, J. O. (1982). Some statistical approaches to multidimensional scaling.Journal of the Royal Statistical Society, Series A, 145, 285–312.

    Google Scholar 

  • Rao, C. R. (1973).Linear statistical inference and its applications. New York: Wiley.

    Google Scholar 

  • Scheffé, H. (1959).The analysis of variance. New York: Wiley.

    Google Scholar 

  • Schmoyer, R. L. (1984). Everyday application of the cell means model.The American Statistician, 38, 49–52.

    Google Scholar 

  • Searle, S. R. (1971).Linear models. New York: Wiley.

    Google Scholar 

  • Seber, G. A. F. (1977).Linear regression analysis. New York: Wiley.

    Google Scholar 

  • Seber, G. A. F. (1984).Multivariate observations. New York: Wiley.

    Google Scholar 

  • Takane, Y. (1980). Analysis of categorizing behavior by a quantification method.Behaviormetrika, 8, 75–86.

    Google Scholar 

  • Takane, Y. (1987). Analysis of contingency tables by ideal point discriminant analysis.Psychometrika, 52, 493–513.

    Google Scholar 

  • Takane, Y. (1990).Constrained principal component analysis and its applications. Paper submitted for publication.

  • Takane, Y., & Shibayama, T. (1991). Principal component analysis with external information on both subjects and variables.Psychometrika, 56, 97–120.

    Google Scholar 

  • ter Braak, C. J. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis.Ecology, 67, 1167–1179.

    Google Scholar 

  • ter Braak, C. J. F. (1988). Partial canonical correspondence analysis. In H. H. Bock (Ed.),Classification and related methods of data analysis (pp. 551–558). Amsterdam: North-Holland.

    Google Scholar 

  • Timm, N. H. (1975).Multivariate analysis with applications in education and psychology. Belmont, CA: Wadsworth.

    Google Scholar 

  • van den Wollenberg, A. L. (1977). Redundancy analysis: An alternative for canonical correlation analysis.Psychometrika, 42, 207–219.

    Google Scholar 

  • van der Burg, E., de Leeuw, J. & Verdegaal, R. (1988). Homogeneity analysis withk sets of variables: An alternating least squares method with optimal scaling features.Psychometrika, 53, 177–197.

    Google Scholar 

  • van der Heijden, P. G. M., de Falguerolles, A., & de Leeuw, J. (1989). A combined approach to contingency table analysis using correspondence analysis and log-linear analysis.Applied Statistics, 38, 249–292.

    Google Scholar 

  • van der Heijden, P. G. M., & de Leeuw, J. (1985). Correspondence analysis used complementary to loglinear analysis.Psychometrika, 50, 429–447.

    Google Scholar 

  • van der Heijden, P. G. M., & Meijerink, F. (1989). Generalized correspondence analysis of multi-way contingency tables and multi-way (super-) indicator matrices. In R. Coppi & S. Bolasco (Eds.),Multiway data analysis (pp. 185–202). Amsterdam: Elsevier.

    Google Scholar 

  • van der Heijden, P. G. M., & Worsley, K. J. (1988). Comment on “Correspondence analysis used complementary to loglinear analysis”.Psychometrika, 53, 287–291.

    Google Scholar 

  • Yanai, H. (1986). Some generalizations of correspondence analysis in terms of projection operators. In E. Diday, Y. Escoufier, L. Lebart, J. Pagés, Y. Schectman, & R. Tomassone (Eds.),Data analysis and informatics IV (pp. 193–207). Amsterdam: North-Holland.

    Google Scholar 

  • Yanai, H. (1988). Partial correspondence analysis and its properties. In C. Hayashi, M. Jambu, E. Diday, & N. Ohsumi (Eds.),Recent developments in clustering and data analysis (pp. 259–266). Boston: Academic Press.

    Google Scholar 

  • Yanai, H. (1990). Some generalized forms of least squaresg-inverse, minimum normg-inverse and Moore-Penrose inverse matrices.Computational Statistics and Data Analysis, 10, 251–260.

    Google Scholar 

  • Yanai, H., & Takane, Y. (1990). Canonical correlation analysis with linear constraints. Paper submitted for publication.

  • Yanai, H., & Takeuchi, K. (1983).Projection matrices, generalized inverse and singular value decomposition. Tokyo: University of Tokyo Press. (in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work reported in this paper has been supported by grant A6394 from the Natural Sciences and Engineering Research Council of Canada to the first author. We wish to thank Carolyn Anderson, Ulf Böckenholt, Henk Kiers, Shizuhiko Nishisato, Jim Ramsay, Tadashi Shibayama, Cajo ter Braak, and Peter van der Heijden for their helpful comments on earlier drafts of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takane, Y., Yanai, H. & Mayekawa, S. Relationships among several methods of linearly constrained correspondence analysis. Psychometrika 56, 667–684 (1991). https://doi.org/10.1007/BF02294498

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294498

Key words

Navigation