Log in

Weighted minimum trace factor analysis

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In the last decade several authors discussed the so-called minimum trace factor analysis (MTFA), which provides the greatest lower bound (g.l.b.) to reliability. However, the MTFA fails to be scale free. In this paper we propose to solve the scale problem by maximization of the g.l.b. as the function of weights. Closely related to the primal problem of the g.l.b. maximization is the dual problem. We investigate the primal and dual problems utilizing convex analysis techniques. The asymptotic distribution of the maximal g.l.b. is obtained provided the population covariance matrix satisfies sone uniqueness and regularity assumptions. Finally we outline computational algorithms and consider numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Reference notes

  • Hakim, M., Lochard, E. O., Olivier, J. P. & Térouanne, E.Sur les traces de Spearman. Cahiers du bureau universitaire du recherche opérationelle, Université Pierre et Marie Curie, Paris, 1976.

  • Della Riccia, G. & Shapiro, A.Minimum rank and minimum trace of covariance matrices. Department of Mathematics, Ben-Gurion University of the Negev, Beer Sheva, Israel, 1980.

  • Moss, A. G.Theoretical aspects of weight-vector maximization of composite test reliability. Institute of Educational Technology, The Open University, Walton Hall, England, 1977.

    Google Scholar 

References

  • Bentler, P. M. Alpha-maximized factor analysis (alphamax): its relation to alpha and canonical factor analysis.Psychometrika, 1968,33, 335–345.

    Google Scholar 

  • Bentler, P. M. A lower-bound method for the dimension-free measurement of internal consistency.Social Science Research, 1972,1, 343–357.

    Google Scholar 

  • Bentler, P. M. & Woodward, J. A. Inequalities among lower bounds to reliability: with applications to test construction and factor analysis.Psychometrika, 1980,45, 249–267.

    Google Scholar 

  • Bertsekas, D. P. & Mitler, S. K. Steepest descent for optimization problems with nondifferentiable cost functions.Prceedings of the 5th Annual Princeton Conference on Information Sciences and Systems, 1971.

  • Bellman, R.Introduction to matrix analysis. McGraw-Hill, 1960.

  • Cullum, J., Donath, W. E. & Wolfe, P. The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices.Mathematical Programming Study 3, North-Holland Publishing Company, 1975.

  • Dem'yanow, V. F. & Malozemov, V. N.Introduction to minimax. Wiley, New York, 1974.

    Google Scholar 

  • Guttman, L. Best possible systematic estimates of communalities.Psychometrika, 1956,21, 273–285.

    Google Scholar 

  • Guttman, L. To what extent can communalities reduce rank?Psychometrika, 1958,23, 297–307.

    Google Scholar 

  • Gantmacher, F. R.The theory of matrices. New York, 1959.

  • Gilbert, E. An iterative procedure for computing the minimum of a quadratic form on a convex set.SIAM Journal Control, 1966,4, 61–80.

    Google Scholar 

  • Goldstein, A. A. Optimization of Lipshitz continuous functions.Mathematical Programming, 1977,13, 14–22.

    Google Scholar 

  • Harman, H.Modern factor analysis. Chicago, 1976.

  • Jackson, P. H. & Agunwamba, C. C. Lower bounds for the reliability of the total score on a test composed of non-homogeneous items: I: Algebraic lower bounds.Psychometrika, 1977,42, 567–578.

    Google Scholar 

  • Ledermann, W. On a problem concerning matrices with variable diagonal elements.Proceedings of the Royal Society Edinburgh, 1939,60, 1–17.

    Google Scholar 

  • Madsen, K. & Schijoer-Jacobson. Linearly constrained minimax optimization.Mathematical Programming, 1978,17, 208–223.

    Google Scholar 

  • Pshenichnyi, B. N.Necessary conditions for an extremum. Marcel Dekker, Inc., New York, 1971.

    Google Scholar 

  • Rockafellar, R. T.Convex analysis. Princeton, 1970.

  • Stein, F. M.Singular integrals and differentiability properties of functions. Princeton Mathematics Serial no. 30, 1970.

  • Shapiro, A. Rank-reducibility of a symmetric matrix and sampling theory of minimum trace factor analysis.In press.

  • Ten Berge, J. M. F., Snijders, T. A. B., & Zegers, F. E. Computational aspects of the greatest lower bound to the reliability and constrained minimum trace factor analysis.Psychometrika, 1981,46, 201–213.

    Google Scholar 

  • Woodhouse, B. & Jackson, P. H. Lower bounds for the reliability of the total score on a test composed of nonhomogeneous items: a search procedure to locate the greatest lower bound.Psychometrika, 1977,42, 579–591.

    Google Scholar 

  • Zangwill, W. J.Nonlinear programming, a unified approach. Prentice-Hall, 1967.

Download references

Author information

Authors and Affiliations

Authors

Additional information

I wish to express my gratitude to Dr. A. Melkman for the idea of theorem 3.3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapiro, A. Weighted minimum trace factor analysis. Psychometrika 47, 243–264 (1982). https://doi.org/10.1007/BF02294158

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294158

Key words

Navigation