Log in

A molecular phylogeny of dinoflagellate protists (Pyrrhophyta) inferred from the sequence of 24S rRNA divergent domains D1 and D8

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The sequence of two divergent domains (D1 and D8) from dinoflagellate 24S large subunit rRNA was determined by primer extension using total RNA as template. Nucleotide sequence alignments over 401 bases have been analyzed in order to investigate phylogenetic relationships within this highly divergent and taxonomically controversial group of protists of the division Pyrrhophyta. Data are provided confirming that dinoflagellates represent a monophyletic group. For 11 out of the 13 investigated laboratory grown species, an additional domain (D2) could not be completely sequenced by reverse transcription because of a hidden break located near its 3′-terminus. Two sets of sequence alignments were used to infer dinoflagellate phylogeny. The first [199 nucleotides (nt)] included conservative sequences flanking the D1 and D8 divergent domains. It was used to reconstruct a broad evolutionary tree for the dinoflagellates, which was rooted usingTetrahymena thermophila as the outgroup. To confirm the tree topology, and mainly the branchings leading to closely related species, a second alignment (401 nt) was considered, which included the D1 and D8 variable sequences in addition to the more conserved flanking regions. Species that showed sequence similarities with other species lower than 60% on average (Knuc values higher than 0.550) were removed from this analysis. A coherent and convincing evolutionary pattern was obtained for the dinoflagellates, also confirmed by the position of the hidden break within the D2 domain, which appears to be group specific. The reconstructed phylogeny indicates that the early emergence ofOxyrrhis marina preceded that of most Peridiniales, a large order of thecate species, whereas the unarmored Gymnodiniales appeared more recently, along with members of the Prorocentrales characterized by two thecal plates. In addition, the emergence of heterotrophic species preceded that of photosynthetic species. These results provide new perspectives on proposed evolutionary trees for the dinoflagellates based on morphology, biology, and fossil records.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Siedman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology, vol. 1. Wiley Interscience, New York

    Google Scholar 

  • Baroin A, Perasso R, Qu LH, Brugerolle G, Bachellerie JP, Adoutte A (1988) Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28S ribosomal RNA. Proc Natl Acad Sci USA 85:3474–3478

    Google Scholar 

  • Bischoff H, Bold H (1963) Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. University of Texas Publications, no. 6318

  • Bujak J, Williams G (1981) The evolution of dinoflagellates. Can J Bot 59:2077–2087

    Google Scholar 

  • Campbell DA, Kubo K, Clark CG, Boothroyd JC (1987) Precise identification of cleavage sites involved in the unusual processing of trypanosome ribosomal RNA. J Mol Biol 196:113–124

    Article  PubMed  Google Scholar 

  • Cedergren R, Gray MW, Abel Y, Sankoff D (1988) The evolutionary relationships among known life forms. J Mol Evol 28:98–112

    PubMed  Google Scholar 

  • de Lanversin G, Jacq B (1983) Séquence de la région de coupure centrale du précurseur de l'ARN ribosomique 26S de drosophile. CR Acad Sci Ser III 296:1041–1044

    Google Scholar 

  • de Lanversin G, Jacq B (1989) Sequence and secondary structure of the central domain ofDrosophila 26S rRNA: a universal model for the central domain of the large rRNA containing the region in which the central break may happen. J Mol Evol 28:403–417

    PubMed  Google Scholar 

  • Dodge JD (1984) Dinoflagellate taxonomy. In: Spector DL (ed) Dinoflagellates. Academic Press, New York, pp. 17–42

    Google Scholar 

  • Dörhöfer G, Davies E (1980) Evolution of archeopyle and tabulation in rhaetogonyaulacinean dinoflagellate cysts. R Ont Mus Life Sci Misc Publ, pp 1–91

  • Eaton G (1980) Nomenclature and homology in peridinialean dinoflagellate patterns. Palaeontology 23:667–688

    Google Scholar 

  • Eckenrode VK, Arnold J, Meagher RB (1985) Comparison of the nucleotide sequence of soybean 18S rRNA with the sequences of other small-subunit rRNAs. J. Mol Evol 21:259–269

    Google Scholar 

  • Engberg J, Nielsen H, Lenaers G, Murayama O, Fujitani H, Higashinakagawa T (1990) Comparison of primary and secondary 26S ribosomal RNA structures in twoTetrahymena species: evidence for a strong evolutionary and structural constraint in expansion segments. J Mol Evol 30:514–521

    PubMed  Google Scholar 

  • Fitch WM (1981) A non-sequential method for constructing trees and hierarchical classifications. J Mol Evol 18:30–37

    Article  PubMed  Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    PubMed  Google Scholar 

  • Gill LL, Hardman N, Chappell L, Qu LH, Nicoloso M, Bachellerie JP (1988) Phylogeny onOnchocerca volvulus and related species deduced from rRNA sequence comparison. Mol Biochem Parasitol 28:69–76

    PubMed  Google Scholar 

  • Goodman DK (1987) Dinoflagellate cysts in ancient and modern sediments. In: Taylor JFR (ed) The biology of dinoflagellates. Bot Monog 21:649–722

  • Gouy M, Li WH (1989a) Phylogenetic analysis based on ribosomal RNA sequences supports the archaebacterial tree rather than the eocyte tree. Nature 339:145–149

    Article  PubMed  Google Scholar 

  • Gouy M, Li WH (1989b) Molecular phylogeny of the kingdoms Animalia, Plantae, and Fungi. Mol Biol Evol 6:109–122

    PubMed  Google Scholar 

  • Guillard R, Ryther J (1963) Studies on marine planktonic diatoms. I.Cyclotella nana Husted andDetonula confervacea Cleve. Gran. Can J Microbiol 8:229–239

    Google Scholar 

  • Gutell RR, Fox EF (1988) A compilation of large subunit RNA sequences presented in a structural format. Nucleic Acids Res 16(suppl):r175-r269

    PubMed  Google Scholar 

  • Hassouna N, Michot B, Bachellerie JP (1984) The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res 12:3563–3583

    PubMed  Google Scholar 

  • Herzog M, Soyer MO (1981) Distinctive features of dinoflagellate chromatin. Absence of nucleosomes in a primitive speciesProrocentrum micans. Eur J Cell Biol 23:295–302

    PubMed  Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions. J Mol Evol 16:111–120

    Article  PubMed  Google Scholar 

  • Lane D, Pace B, Olsen G, Sthal D, Sogin M, Pace N (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959

    PubMed  Google Scholar 

  • Leffers H, Kjems J, Ostergaard L, Larsen N, Garret R (1987) Evolutionary relationships amongst archaebacteria. A comparative study of 23S ribosomal RNAs of a sulphur-dependant extreme thermophile, an extreme halophile and a thermophilic methanogen. J Mol Biol 195:43–61

    PubMed  Google Scholar 

  • Lenaers G, Nielsen H, Engberg J, Herzog M (1988) The secondary structure of large subunit rRNA divergent domains, a marker for protist evolution. BioSystems 21:215–222

    Article  PubMed  Google Scholar 

  • Lanaers G, Maroteaux L, Michot B, Herzog M (1989) Dinoflagellates in evolution. A molecular phylogenetic analysis of large-subunit ribosomal RNA. J Mol Evol 29(1):40–51

    PubMed  Google Scholar 

  • Loeblich AR (1976) Dinoflagellate evolution: speculation and evidence. J Protozool 23:13–28

    PubMed  Google Scholar 

  • Loeblich AR (1984) Dinoflagellate evolution. In: Spector DL (ed) Dinoflagellates. Academic, New York, pp 481–522

    Google Scholar 

  • Maniatis T, Fritsch E, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p 545

    Google Scholar 

  • Michot B, Bachellerie JP (1987) Comparisons of large subunit rRNAs reveal some eukaryote specific elements of secondary structure. Biochemie 69:11–23

    Article  Google Scholar 

  • Michot B, Hassouna N, Bachellerie JP (1984) Secondary structure of mouse 28S rRNA and general models for the folding of the large RNA in eukaryotes. Nucleic Acids Res 12:4259–4279

    PubMed  Google Scholar 

  • Morrill LC, Loeblich AR (1981) A survey of body scales in dinoflagellates and a revision ofCachonina andHeterocapsa. J Phycol 16(suppl):29

    Google Scholar 

  • Mouches C, Pauplin Y, Agarwal M, Lemieux L, Herzog M, Abadon M, Beyssat-Arnaouty V, Hyrien O, de Saint Vincent BR, Georghiou GP, Pasteur N (1990) Characterization of amplification core and esterase B1 gene responsible for insecticide resistance inCulex. Proc Natl Acad Sci USA 87:2574–2578

    PubMed  Google Scholar 

  • Perasso R, Baroin A, Qu LH, Bachellerie JP, Adoutte A (1989) Origin of the algae. Nature 339:142–144

    Article  PubMed  Google Scholar 

  • Provasoli L (1963) Growing marine seaweeds. Proc Int Seaweed Symp 4:9–17

    Google Scholar 

  • Qu LH, Michot B, Bachellerie JP (1983) Improved methods for structure probing in large RNAs: a rapid heterologous sequencing approach is coupled to the direct map** of nuclease accessible sites. Implication to the 5′ terminal domains of eukaryotic 28S rRNA. Nucleic Acids Res 17:5903–5920

    Google Scholar 

  • Qu LH, Hardman N, Gill LL, Chappell L, Nicoloso M, Bachellerie JP (1986) Phylogeny of helminths determined by rRNA sequence comparison. Mol Biochem Parasitol 20:93–99

    PubMed  Google Scholar 

  • Qu LH, Nicoloso M, Bachellerie JP (1988) Phylogenetic calibration of the 5′ terminal domain of large rRNA achieved by determining twenty eucaryotic sequences. J Mol Evol 28:113–124

    PubMed  Google Scholar 

  • Rizzo PJ (1987) Biochemistry of the dinoflagellate nucleus. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:143–173

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  Google Scholar 

  • Sournia A (1984) Classification et nomenclature de divers dinoflagellés marins (classe des Dinophyceae). Phycologia 23: 345–355

    Google Scholar 

  • Sournia A (1986) Dinophyceae. In: Sournia A (ed) Atlas du phytoplancton marin, vol 1. Edition du CNRS, Paris, 219 p

    Google Scholar 

  • Spencer DF, Collings JC, Schnare MN, Gray MW (1987) Multiple spacer sequence in the nuclear large subunit ribosomal RNA gene ofCrithidia fasciculata. EMBO J 6:1063–1071

    Google Scholar 

  • Starr R (1964) The culture collection of algae at Indiana University. Am J Bot 51:1013–1044

    Google Scholar 

  • Studier JA, Keppler KJ (1988) A note on the neighbor-joining algorithm of Saitou and Nei. Mol Biol Evol 6:729–731

    Google Scholar 

  • Taylor F (1980) On dinoflagellate evolution. Biosystems 13: 65–108

    Article  PubMed  Google Scholar 

  • Taylor F (1987) Taxonomy and classification. In: Taylor F (ed) The biology of dinoflagellates. Bot Monogr 21:723–731

  • Tuttle R, Loeblich A (1975) An optimal growth medium for the dinoflagellateCryptecodinium cohnii. Phycologia 14(1): 1–8

    Google Scholar 

  • Vernet G, Sala-Rovira M, Maeder M, Jacques F, Herzog M (1990) Electrophoretic and DNA-binding properties of the major basic nuclear proteins from the histone-less eukaryoteCrypthecodinium cohnii (Pyrrhophyta). Biochim Biophys Acta 1048:281–289

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenaers, G., Scholin, C., Bhaud, Y. et al. A molecular phylogeny of dinoflagellate protists (Pyrrhophyta) inferred from the sequence of 24S rRNA divergent domains D1 and D8. J Mol Evol 32, 53–63 (1991). https://doi.org/10.1007/BF02099929

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099929

Key words

Navigation