Log in

Excitatory action of γ-aminobutyric acid (GABA) on crustacean neurosecretory cells

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. Intracellular and voltage-clamp recordings were obtained from a selected population of neuroscretory (ns) cells in the X organ of the crayfish isolated eyestalk. Pulses of γ-aminobutyric acid (GABA) elicited depolarizing responses and bursts of action potentials in a dose-dependent manner. These effects were blocked by picrotoxin (50 µM) but not by bicuculline. Picrotoxin also suppressed spontaneous synaptic activity.

2. The responses to GABA were abolished by severing the neurite of X organ cells, at about 150 µm from the cell body. Responses were larger when the application was made at the neuropil level.

3. Topical application of Cd2+ (2 mM), while suppressing synaptic activity, was incapable of affecting the responses to GABA.

4. Under whole-cell voltage-clamp, GABA elicited an inward current with a reversal potential dependent on the chloride equilibrium potential. The GABA effect was accompanied by an input resistance reduction up to 33% at a −50 mV holding potential. No effect of GABA was detected on potassium, calcium, and sodium currents present in X organ cells.

5. The effect of GABA on steady-state currents was dependent on the intracellular calcium concentration. At 10−6 M [Ca2+]i, GABA (50 µM) increased the membrane conductance more than threefold and shifted the zero-current potential from−25 to−10 mV. At 10−9 M [Ca2+]i, GABA induced only a 1.3-fold increase in membrane conductance, without shifting the zero-current potential.

6. These results support the notion that in the population of X organ cells sampled in this study, GABA acts as an excitatory neurotransmitter, opening chloride channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, P. R., and Brown, D. A. (1975). Actions of γ-aminobutyric acid on sympathetic ganglion cells.J. Physiol. 250:85–120.

    Google Scholar 

  • Alvarez-Leefmans, F. J., Gamiño, S. M., Giraldez, F., and Noguerón, I. (1988). Intracellular chloride regulation in amphibian dorsal root ganglion neurones studied with ion-selective microelectrodes.J. Physiol. (London)406:225–246.

    Google Scholar 

  • Andrew, R. D., Orchard, I., and Saleuddin, A. S. M. (1978). Structural reevaluation of the neurosecretory system in the crayfish eyestalk.Cell Tissue Res. 190:235–246.

    Google Scholar 

  • Aréchiga, H., Cortés, J. J., García, U., and Rodríguez-Sosa, L. (1985a). Neuroendocrine correlates of circadian rhythmicity in crustaceans.Am. Zool. 25:265–274.

    Google Scholar 

  • Aréchiga, H., García, U., and Martínez-Millán, L. (1990). Synaptic regulation of neurosecretory cell activity in the crayfish eyestalk. InFrontiers in Crustacean Neurobiology (K. Wieseet al., Eds.), Birkhauser Verlag, Basel, pp. 373–380.

    Google Scholar 

  • Atwood, H. L. (1976). Organization and synaptic physiology of crustacean neuromuscular systems.Prog. Neurobiol. 7:291–391.

    Google Scholar 

  • Bormann, J., Hamill, O. P., and Sakmann, B. (1987). Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurons.J. Physiol. 385:234–286.

    Google Scholar 

  • Cooke, I. M. (1985). Electrophysiological characterization of peptidergic neurosecretory terminals.J. Exp. Biol. 118:1–35.

    Google Scholar 

  • Cooke, I. M., and Stuenkel, E. (1985). Electrophysiology of invertebrate neurosecretory cells. InThe Electrophysiology of the Secretory Cell (A. M. Poisner and J. Trifaro, Eds.), Elsevier, Amsterdam, pp. 115–164.

    Google Scholar 

  • Cherubini, E., Gaiarsa, J. L., and Yehezkel, B.-A. (1991). GABA—an excitatory transmitter in early postnatal life.TINS 14:515–519.

    Google Scholar 

  • Enna, S. J. (1983). GABA receptors. InThe GABA Receptors (S. J. Enna, Ed.), Humana Press, Clifton, NJ, pp. 1–18.

    Google Scholar 

  • Fingerman, M. (1985). The physiology and pharmacology of crustacean chromatophores.Am. Zool. 25:233–252.

    Google Scholar 

  • Gallagher, J. P., and Shinnick-Gallagher, P. (1983). Electrophysiological characteristics of GABA receptor complex. InThe GABA Receptor (S. J. Enna, Ed.), Humana Press, Clifton, NJ, pp. 25–61.

    Google Scholar 

  • García, U., Onetti, C., Valdiosera, R. and Aréchiga, H. (1991a). GABA is an excitatory transmitter in crayfish central synapses.Third IBRO World Congress of Neuroscience, Montreal, Canada, p. 215.

  • García, U., García-Colunga, J., and Aréchiga, H. (1991b). Differential effects of gamma-aminobutyric acid, glycine, and taurine on central synapses of crustaceans.Proc. West. Pharmacol. Soc. 34:215–218.

    Google Scholar 

  • Glantz, R. M., Kirk, M. D., and Aréchiga, H. (1983). Light input to crustacean neurosecretory cells.Brain Res. 265:308–311.

    Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sackmann, B., and Sigworth, F. J. (1981). Improved patch-clamp and cell-free membrane patches.Pfluegers Arch. 391:81–100.

    Google Scholar 

  • Iwasaki, S., and Satow, Y. (1970). Spike initiation of neurosecretory neuron soma in Na deficient or TTX medium.J. Physiol. Soc. Jpn. 32:37.

    Google Scholar 

  • Iwasaki, S., and Satow, Y. (1971). Sodium and calcium-dependent spike potentials in the secretory neurons soma of the X-organ of the crayfish.J. Gen. Physiol. 57:216–238.

    Google Scholar 

  • Iwasaki, S., and Satow, Y. (1972). Electrical characteristics of the membrane in neurosecretory neurons. InNeuroendocrine Control (K. Yagi and S. Yoshida, Eds.), Wiley, New York, pp. 85–109.

    Google Scholar 

  • Jaros, P. (1990). Enkephalins, biologically active neuropeptides in invertebrates, with special reference to crustaceans. InFrontiers in Crustacean Neurobiology (K. Wieseet al., Eds.), Birkhauser Verlag, Basel, pp. 471–482.

    Google Scholar 

  • Johnston, G. A. R. (1986). Multiplicity of GABA receptors. InBenzodiazepine/GABA Receptors and Chloride Channels; Structural and Functional Properties (R. Olsen and J. C. Venter, Eds.), Alan R. Liss, New York, pp. 57–71.

    Google Scholar 

  • Kirk, M. D., and Glantz, R. M. (1982). A visually induced GABA mediated IPSP in a crustacean neurosecretory cell.Neurosci. Abstr. 8:532.

    Google Scholar 

  • Kirk, M. D., Prugh, J. I., and Glantz, R. M. (1983). Retinal illumination produces synaptic inhibition of a neurosecretory organ in the crayfish, Pacifastacus leniusculus (Dana).J. Neurobiol. 14:473–480.

    Google Scholar 

  • Llano, I., Lereshe, N., and Marty, A. (1991). Calcium entry increases the sensitivity of cerebelar Purkinje Cells to applied GABA and decreases inhibitory synaptic currents.Neuron 6:567–574.

    Google Scholar 

  • Lunt, G. G. (1991). GABA and GABA receptors in invertebrates.Semin. Neurosci. 3:251–258.

    Google Scholar 

  • Martínez, J. J., Onetti, C. G., García, E., and Hernández, S. (1991). Potassium current kinetics in bursting secretory neurons: Effects of intracellular calcium.J. Neurophys. 66:1455–1461.

    Google Scholar 

  • Mazda, G. Y., Nistri, A., and Sivilotti, L. (1990). The effect of GABA on the frog optic tectum is sensitive to ammonium and to penicillin.Eur. J. Pharmacol. 179:111–118.

    Google Scholar 

  • Mouginot, D., Feltz, P., and Schlichter, R. (1991). Modulation of GABA-gated chloride currents by intracellular Ca2+ in cultured porcine melanotrophs.J. Physiol. 437:109–132.

    Google Scholar 

  • Nagano, M., and Cooke, I. M. (1981). Electrical activity in the crab X organ-sinus gland system. Site of initiation, ionic bases and pharmacology. inNeurosecretory Molecules, Cells, Systems (D. S. Farner and K. Lederis, Eds.), Plenum Press, New York, pp. 504–404.

    Google Scholar 

  • Nagano, M., and Cooke, I. M. (1987). Comparison of electrical responses of terminals, axons, and somata of a peptidergic neurosecretory system.J. Neurosci. 7:634–648.

    Google Scholar 

  • Nistri, A., and Constanti, A. (1979). Pharmacological characterization of different types of GABA and glutamage receptors in vertebrates and invertebrates.Prog. Neurobiol. 13:117–235.

    Google Scholar 

  • Nistri, A., and Sivilotti, L. (1985). An unusual effect of γ-aminobutyric acid on synaptic transmission on frog tectal neuronesin vitro.Br. J. Pharmacol. 85:917–922.

    Google Scholar 

  • Onetti, C. G., García, U., Valdiosera, R. F., and Aréchiga, H. (1990). Ionic currents in crustacean neurosecretory cells.J. Neurophysiol. 64:1514–1526.

    Google Scholar 

  • Pfeiffer-Linn, C., and Glantz, R. M. (1989). Acetylcholine and GABA mediate opposing actions on neuronal chloride channels in crayfish.Science 245:1249–1251.

    Google Scholar 

  • Pfeiffer-Linn, C., and Glantz, R. M. (1991). GABA-mediated inhibition of visual interneurons in the crayfish medulla.J. Comp. Physiol. A 168:373–381.

    Google Scholar 

  • Russell, J. M., and Brown, A. M. (1972). Active transport of chloride by the giant neuron of the Aplysia abdominal ganglion.J. Gen. Physiol. 60:499–518.

    Google Scholar 

  • Sansom, N. S. P., and Usherwood, P. N. R. (1990). Single-channel studies of glutamate receptors.Int. Rev. Neurobiol. 32:51–106.

    Google Scholar 

  • Sivilotti, L., and Nistri, A. (1989). Pharmacology of a novel effect ofγ-aminobutyric acid on the frog optic tectumin vitro.Eur. J. Pharmacol. 164:205–215.

    Google Scholar 

  • Stuenkel, E. L. (1985). Simultaneous monitoring of electrical secretory activity in peptidergic neurosecretory terminals of the crab.J. Physiol. Lond. 359:163–187.

    Google Scholar 

  • Takeuchi, A. (1976). Studies of inhibitory effects of GABA in invertebrate nervous system. InGABA in Nervous System Function (E. Roberts, T. N. Chase, and D. B. Tower, Eds.), Raven Press, New York, pp. 255–267.

    Google Scholar 

  • Yarowsky, P. J., and Carpenter, D. P. (1978). Receptors for gamma-aminobutyric acid (GABA) on Aplysia neurons.Brain Res. 144:75–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, U., Onetti, C., Valdiosera, R. et al. Excitatory action of γ-aminobutyric acid (GABA) on crustacean neurosecretory cells. Cell Mol Neurobiol 14, 71–88 (1994). https://doi.org/10.1007/BF02088590

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088590

Key Words

Navigation