Log in

Production of polysaccharide slime by microbial mats in the hypersaline environment of a Western Australian solar saltfield

  • Published:
International Journal of Salt Lake Research

Abstract

Of the many microorganisms present in the hypersline environment of the saltfield studied, the cyanobacteriumSynechococcus was found to be the major producer of polysaccharide slime. When dissolved in the brine, this slime caused elevated brine viscosities which impaired the quality of the salt crystallised from such brine.Synechococcus was present in benthic microbial mats throughout the 6 concentrating ponds of the saltfield, but it dominated in the ponds where brine density was above 1.10 g cm−3, corresponding to the saturation density of gypsum (CaSO4·2H2O). At such density,Synechococcus was always associated with copious amounts of slime. At lower density, the nature of the substratum over which the mat was growing affected the slime content and productivity of the mat, presumably relatively to its ability to supply nutrients to the mat. Under laboratory conditions, the addition of gypsum stimulated the growth ofSynechococcus in the presence of excess phosphate (>15 mg L−1 PO4-P). Slime production however was not stimulated by high salinity, addition of (CaSO4·2H2O), NaSO4 or nitrate deficiency. Only as cultures entered a stationary phase of growth did slime production increase. It was concluded that a nutrient limitation was probably responsible for the activation of extracellular polysaccharide production, possibly as a means of disposing of excess photosynthetically fixed carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, G. 1977. Growth ofOscillatoria agardhii in chemostat culture. I. Nitrogen and phosphorus requirements. Oikos 29: 209–224.

    CAS  Google Scholar 

  • American Society for Testing and Materials, 1978. Book of ASTM Standards, Part 23: Petroleum Products and Lubricants (I), D53-D1669. Philadelphia, PA.

  • Bauld, J. 1986. Benthic microbial communities of Australian saline lakes. In: P. De Deckker and W.D. Williams (Eds) Limnology in Australia, pp. 95–110. Melbourne CSIRO, and Dordrecht, Junk.

    Google Scholar 

  • Biebl, H. and Pfennig, N. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Microbiology 117(9): 9–16.

    CAS  Google Scholar 

  • Brock, T.D. 1976. Halophilic blue-green algae. Archiv für Mikrobiologie 107: 109–111.

    CAS  Google Scholar 

  • Burton, S.D. and Lee, J.D. 1978. Improved enrichment and isolation procedures for obtaining pure cultures ofBeggiatoa. Applied Environmental Microbiology 35: 614617.

    Google Scholar 

  • De Deckker, P. 1983. Australian salt lakes: their history, chemistry and biota — a review. Hydrobiologia 105: 231–244.

    Article  Google Scholar 

  • Falkner, G., Werdan, K., Horner, F. and Heldt, H.W. 1974. Energieabhangige Phosphataufnahme der BlaualgeAnacystis nidulans. Ben dt. bot. Ges. 87: 263–266.

    Google Scholar 

  • Gerdes, G. and Krumbein, W.E. 1987. Biolaminated deposits. In: S. Bhattacharji, G.M. Friedman, H.J. Neugebauer and A. Seilacher (Eds) Lecture Notes in Earth Sciences, Vol. 9, p. 183. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Healey, F.P. 1982. Phosphate. In: N.G. Carr and B.A. Whitton (Eds) The Biology of Cyanobacteria. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Hellebust, J.A. 1974. Extracellular products. In: W.D.P. Stewart (Ed) Algal Physiology and Biochemistry, pp. 838–863. University of California Press, Berkeley, CA.

    Google Scholar 

  • Hof, T. and Fremy, P. 1933. On myxophyceae living in strong brines. Recueil des travaux botaniques neerlandais 30: 140–162.

    Google Scholar 

  • Humm, H.J. and Wicks, S.R. 1980. Introduction and Guide to the Marine Bluegreen Algae. Wiley, New York.

    Google Scholar 

  • Jones, A.G., Ewing, C.M. and Melvin, M.V. 1981. Biotechnology of solar saltflelds. Hydrobiologia 82: 391–406.

    Article  Google Scholar 

  • Jones, J.H. and Yopp, J.H. 1979. Cell wall constituents ofAphanothece halophytica (Cyanophyta). Journal of Phycology 15: 62–66.

    Article  CAS  Google Scholar 

  • Jorgensen, B.B. and Marais, D.J.D. 1986. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. Microbial Ecology 38: 179–186.

    CAS  Google Scholar 

  • Kuenzler, E.J. 1965. Glucose-6-phosphate utilisation by marine algae. Journal of Phycology 1: 156–164.

    Google Scholar 

  • Kuenzler, E.J. 1970. Dissolved organic phosphorus excretion by marine phytoplankton. Journal of Phycology 6: 7–13.

    CAS  Google Scholar 

  • Lackey, J.B., Lackey, E.W. and Morgan, G.B. 1965. Taxonomy and ecology of the sulfur bacteria. Bulletin 119: 2–23.

    Google Scholar 

  • Lawry, N.H. and Jensen, T.E. 1975. Variation in fine structure of selected coccoid blue-green algae as a reflection of exogenous sulfur source. Journal of Phycology 11 (Suppl.): 8.

    Google Scholar 

  • Lentz, J. and Zeitzschel, B. 1968. Zur Bestimmung des Extinktionskoeficienten fur Chlorophyll a in Methanol. Kieler Meeresforschung 24: 41–50.

    Google Scholar 

  • McKinney, G. 1941. Absorption of light by chlorophyll solutions. Journal of Biological Chemistry 140: 315–322.

    Google Scholar 

  • McConville, M., Bacic, A. and Clarke, A.E. 1984. The composition of polysaccharides secreted by halophilic bluegreen algae living in solar brine ponds. Report to Dampier Salt.

  • Niemeyer, R. and Richter, G. 1969. Schnellmarkierte Polyphosphate und Metaphosphate by der BlaualgeAnacystis nidulans. Archiv für Mikrobiologie 69: 54–59.

    Article  CAS  PubMed  Google Scholar 

  • Oren, A. and Shilo, M. 1979. Anaerobic heterotrophic dark metabolism in the cyanobacteriumOscillatoria limnetica: sulfur respiration and lactate fermentation. Archiv für Mikrobiologie 122: 77–84.

    CAS  Google Scholar 

  • Paling, E.I. 1986. Ecological significance of blue-green algal mats in the Dampier mangrove ecosystem. Department of Conservation and Environment, Perth, Western Australia. Technical Series, 2.

    Google Scholar 

  • Paling, E.I., McComb, A.J. and Pate, J.S. 1989. Nitrogen fixation (acetylene reduction) in non-heterocystous cyanobacterial mats from the Dampier Archipelago, Western Australia. Australian Journal of Marine and Freshwater Reseach 40: 147–153.

    CAS  Google Scholar 

  • Pfennig, N. 1977. Phototrophic green and purple bacteria: a comparative, systematic survey. Annual Review of Microbiology 31: 275–290.

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N. and Truper, H.G. 1981. Isolation of members of the families Chromatiaceae and Chlorobiaceae. In: Starr, M.P., Stolp, H., Truper, H.G., Balows, A. and Schlegel, H.G. (Eds) The Prokaryotes, Vol. 1, Springer-Verlag, New York.

    Google Scholar 

  • Potts, M. 1980. Blue-green algae (Cyanophyta) in mangrove coastal environments in the Sinai Peninsula; distribution, zonation, stratification and taxonomic diversity. Phycologia 19: 60–73.

    Google Scholar 

  • Reed, R.H., Chudek, J.A., Foster, R. and Stewart, W.D.P. 1984. Osmotic adjustment in cyanobacteria from hypersaline environments. Archiv für Mikrobiologie 138: 333–337.

    CAS  Google Scholar 

  • Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. and Stanier, R.Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111: 1–61.

    Google Scholar 

  • Rippka, R., Waterbury, J.B. and Stanier, R.Y. 1981. Isolation and purification of cyanobacteria: Some general principles. In: Starr, M.P., Stolp, H., Truper, H.G., Barlows, A. and Schlegel, H.G. (Eds) The Prokaryotes, Vol. 1. Springer-Verlag, New York.

    Google Scholar 

  • Sammy, N. 1979. The blue-green algae of Dampier division, Dampier Salt (Operations), Pty, Ltd. Report to Dampier Salt.

  • Sammy, N. 1983. Biological systems in North-Western Australian solar salt fields. In: B. Charlotte Schreiber and H. Lincoln Harner (Eds) Sixth International Symposium on Salt, Vol. 1. The Salt Institute, Virginia USA 1: 207–215.

    Google Scholar 

  • Sangar, V.K. and Dugan, P.R. 1972. Polysaccharide produced byAnacystis nidulans: its ecological implication. Applied Microbiology 24: 732–734.

    PubMed  CAS  Google Scholar 

  • Schneider, J. and Herrmann, A.G. 1978. Saltworks — natural laboratories for microbiological and geochemical investigations during the evaporation of seawater. In: Alan H. Coogan & Lukas Hauber (Eds) Fifth International Symposium on Salt, Vol. 2. The Northern Ohio Geological Society, Ohio, USA 2: 371–381.

    Google Scholar 

  • Seely, G.R. and Jensen, R.G. 1965. Effect of solvent on the spectrum of chlorophyll. Spectrochemica Acta 21: 1835–1845.

    Article  CAS  Google Scholar 

  • Stal, L.J., Grossberger, S. and Krumbein, W.E. 1984. Nitrogen fixation associated with the cyanobacterial mat of a marine laminated microbial ecosystem. Marine Biology 82: 217–224.

    Article  CAS  Google Scholar 

  • Stal, L.J., Gemerden, H.V. and Krumbein, W.E. 1985. Structure and development of a benthic marine microbial mat. FEMS Microbiology Ecology 31: 111–125.

    Article  CAS  Google Scholar 

  • Stauffer, R.E., Lee, G.R and Armstrong, D.E. 1979. Estimating chlorophyll extraction biases. Journal of Fisheries Research Board of Canada 36: 152–157.

    CAS  Google Scholar 

  • Strickland, J.D.H. and Parson, T.R. 1968. A Practical Handbook of Seawater Analysis (2nd ed). Bulletin of Fisheries Research Board of Canada 167: 311.

    Google Scholar 

  • Tett, P., Kelly, M.G. and Hornberger, G.M. 1975. A method for the spectrophotometric measurement of chlorophyll a and pheophytin a in benthic microalgae. Limnology and Oceanography 20: 887–896.

    Article  Google Scholar 

  • Truper, H.G and Imhoff, J.F. 1981. The genusEctothiorhodospira. In: Starr, M.P., Stolp, H., Truper, H.G., Balows, A. and Schlegel, H.G. (Eds) The Proksaryotes, Vol. 1, Springer-Verlag, New York.

    Google Scholar 

  • Umezaki, I. 1961. The marine blue-green algae of Japan. Kyoto University, Japan. Memoirs of the College of Agriculture, Kyoto University 83(8): 1–149.

    Google Scholar 

  • Van Niel, C.B. 1931. On the morphology and physiology of the purple and green sulphur bacteria. Archiv für Mikrobiologie 3: 1–112.

    Article  Google Scholar 

  • Velasquez, 1962. Blue-green algae of the Philippines. The Philippine Journal of Science 91: 268–380.

    Google Scholar 

  • Weckesser and Drews, G.J. 1979. Lipopolysaccharides of photosynthetic prokariotes. Annual Review of Microbiology 33: 215–239.

    Article  PubMed  CAS  Google Scholar 

  • Yopp, J.H., Tindall, D.R., Miller, D.M. and Schmid, W.E. 1978. Isolation, purification and evidence for a halophilic nature of the blue-green algaAphanothece halophytica Fremy (Chroococcales). Phycologia 17(2): 172–178.

    CAS  Google Scholar 

  • Yopp, J.H., Albright, G. and Miller, D.M. 1979. Effects of antibiotics and ultraviolet radiation on the halophilic bluegreen alga,Aphanothece halophytica. Botanica Marina 22: 167–272.

    Article  Google Scholar 

  • Zar, J.H. 1974. Biostatistical Analysis (2). Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roux, J.M. Production of polysaccharide slime by microbial mats in the hypersaline environment of a Western Australian solar saltfield. International Journal of Salt Lake Research 5, 103–130 (1996). https://doi.org/10.1007/BF01995826

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01995826

Key words

Navigation