Log in

Single-file diffusion through the Ca2+-activated K+ channel of human red cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The ratio between the unidirectional fluxes through the Ca2+-activated K+-specific ion channel of the human red cell membrane has been determined as a function of the driving force (V m -E K ). Net effluxes and42K influxes were determined during an initial period of ∼90 sec on cells which had been depleted of ATP and loaded with Ca. The cells were suspended in buffer-free salt solutions in the presence of 20 μm of the protonophore CCCP, monitoring in this way changes in membrane potential as changes in extracellular pH. (V m -E K) was varied at constantE K by varying the Nernst potential and the conductance of the anion and the conductance of the potassium ion. In another series of experimentsE K was varied by suspending cells in salt solutions with different K+ concentrations. At high extracellular K+ concentrations both of the unidirectional fluxes were determined as42K in- and effluxes in pairs of parallel experiments. Within a range of (V m -E K) of −6 to 90 mV the ratio between the unidirectional fluxes deviated strongly from the values predicted by Ussing's flux ratio equation. The Ca2+-activated K+ channel of the human red cell membrane showed single-file diffusion with a flux ratio exponentn of 2.7. The magnitude ofn was independent of the driving force (V m -E K), independent ofV m and independent of the conductanceg K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Begenisich, T., De Weer, P. 1980. Potassium flux ratio in voltage-clamped squid axons.J. Gen. Physiol. 76:83–98

    Article  PubMed  Google Scholar 

  • Ferreira, H.G., Lew, V.L. 1976. Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca.Nature (London) 259:47–49

    Google Scholar 

  • Gárdos, G. 1958. The function of calcium in the potassium permeability of human erythrocytes.Biochim. Biophys. Acta 30:653–654

    PubMed  Google Scholar 

  • Grygorczyk, R., Schwarz, W. 1983. Properties of the Ca2+-activated K+ conductance of human red cells as revealed by the patch-clamp technique.Cell Calcium 4:499–510

    Article  PubMed  Google Scholar 

  • Hamill, O.P. 1981. Potassium channel currents in human red blood cells.J. Physiol. (London) 319:97P-98P

    Google Scholar 

  • Hille, B., Schwarz, W. 1978. Potassium channels as multi-ion single-file pores.J. Gen. Physiol. 72:409–442

    PubMed  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. The components of membrane conductance in the giant axon ofLoligo.J. Physiol. (London) 116:449–472

    Google Scholar 

  • Hodgkin, A.L., Keynes, R.D. 1955. The potassium permeability of a giant nerve fibre.J. Physiol. (London) 128:61–88

    Google Scholar 

  • Hoffman, J.F., Yingst, D.R., Goldinger, J.M., Blum, R.M., Knauf, P.A. 1980. On the mechanism of Ca-dependent K transport in human red blood cells.In: Membrane Transport in Erythrocytes: Alfred Benzon Symp. 14. U.V. Lassen, H.H. Ussing, and J.O. Wieth, editors. pp. 178–195. Munksgaard. Copenhagen

    Google Scholar 

  • Horowicz, P., Gage, P.W., Eisenberg, R.S. 1968. The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle.J. Gen. Physiol. 51:193s-203s

    PubMed  Google Scholar 

  • Knauf, P.A., Fuhrmann, G.F., Rothstein, S., Rothstein, A. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membrane.J. Gen. Physiol. 69:363–386

    PubMed  Google Scholar 

  • Kregenow, F.M., Hoffman, J.F. 1972. Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells.J. Gen. Physiol. 60:406–429

    PubMed  Google Scholar 

  • Latorre, R., Miller, C. 1983. Conduction and selectivity in potassium channels.J. Membrane Biol. 71:11–30

    Google Scholar 

  • Latorre, R., Vergara, C., Hidalgo, C. 1981. Reconstitution in planar lipid bilayers of a Ca2+-dependent K+-channel from transverse tubule membranes isolated from rabbit skeletal muscle.Proc. Natl. Acad. Sci. USA 79:805–809

    Google Scholar 

  • Lew, V.L., Brown, A.M. 1979. Experimental control and assessment of free and bound calcium in the cytoplasm of intact mammalian red cells.In: Detection and Measurement of Free Ca2+ in Cells. C.C. Ashley, and A.K. Campbell editors. pp. 423–432. Elsevier/North-Holland Biomedical, Amsterdam

    Google Scholar 

  • Macey, R.I., Adorante, J.S., Orme, F.W. 1978. Erythrocyte membrane potentials determined by hydrogen ion distribution.Biochim. Biophys. Acta 512:284–295

    PubMed  Google Scholar 

  • Meech, R.W., Standen, N.B. 1975. Potassium activation inHelix aspersa neurons under voltage clamp: A component mediated by calcium influx.J. Physiol. (London) 249:211–239

    Google Scholar 

  • Sjodin, R.A. 1965. The potassium flux ratio in skeletal muscle as a test for independent ion movement.J. Gen. Physiol. 48:777–795

    PubMed  Google Scholar 

  • Spalding, B.C., Senyk, O., Swift, J.G., Horowicz, P. 1981. Unidirectional flux ratio for potassium ions in depolarized frog skeletal muscle.Am. J. Physiol. 241:c68-c75

    Google Scholar 

  • Stampe, P., Vestergaard-Bogind, B. 1985. The Ca2+-sensitive K+-conductance of the human red cell membrane is strongly dependent on cellular pH.Biochim. Biophys. Acta 815:313–321

    PubMed  Google Scholar 

  • Ussing, H.H. 1949. The distinction by means of tracers between active transport and diffusion.Acta Physiol. Scand. 19:43–56

    Google Scholar 

  • Vestergaard-Bogind, B. 1983. Spontaneous inactivation of the Ca2+-sensitive K+-channels of human red cells at high intracellular Ca2+ activity.Biochim. Biophys. Acta 730:285–294

    PubMed  Google Scholar 

  • Vestergaard-Bogind, B., Stampe, P. 1984.Trans tocis proton concentration gradients accelerate ionophore A23187-mediated net fluxes of Ca2+ across the human red cell membrane.Biochim. Biophys. Acta 775:328–340

    PubMed  Google Scholar 

  • Yingst, D.R., Hoffman, J.F. 1984. Ca-induced K transport in human red blood cell ghosts containing Arsenazo III.J. Gen. Physiol. 83:19–45

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vestergaard-Bogind, B., Stampe, P. & Christophersen, P. Single-file diffusion through the Ca2+-activated K+ channel of human red cells. J. Membrain Biol. 88, 67–75 (1985). https://doi.org/10.1007/BF01871214

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871214

Key Words

Navigation